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1 Introduction

The method of maximal likelihood estimators (MLEs) is one of the fundamen-
tal methods for parametric estimation. It was proposed by R. Fisher and was
used in the course of many decades both in applied statistics and in theoretical
studies. The properties of MLEs were studied in a series of works. In the re-
cent papers [1], [2], the maximal likelihood principle is formulated for infinite-
dimensional spaces. Many statistical problems, in particular estimation prob-
lems, are of infinite-dimensional nature and the extension of this method to such
spaces is important. Due to Malliavin’s calculus and, speaking more generally, the
smooth measure calculus it became possible to generalize the MLE principle to
the infinite-dimensional case (see [3]).

In the present paper, using the definitions and methods of [1], [2] the limit prop-
erties of MLEs are investigated for Hilbert (generally speaking, infinite-dimensio-
nal) spaces.

Let E be a linear space, B be a separable real Banach space with norm ‖b‖B,
b ∈ B, Θ be a subspace of the space B, Θ ⊂ B. Θ plays the role of a parametric
set. {Ω, F, P} is a complete probability space. We are going to consider a random
element X = X(ω, θ) on Ω × Θ with values in E. If on E we define a σ-algebra
B of its subsets, such that for each θ ∈ Θ and measurable set E ⊂ E we have
X−1(E) ∈ F, then the variable X on E generates the class of measures {pθ, θ ∈
Θ}. These measures are defined by the relation pθ(E) = P (X−1(E)). The set
{pθ, θ ∈ Θ} is called the distribution of a random element X = X(ω, θ).

We perform observations of a random element X . As a result we obtain the
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sampling which is a sequence of independent random variables X1, X2, . . . , Xn .
The distribution of each of these variables coincides with the distribution of X .
The parameter θ is assumed to be an unknown variable and, based on observa-
tions, it can be evaluated by means of some measurable function, i.e. by the
statistics θ̂n = T = T (X1, X2, . . . , Xn). The meaning of optimality is spec-
ified separately. In any case, the estimator θ̂n of the unknown parameter θ is
considered to be “good” (consistent) if θ̂n infinitely tends to θ as n → ∞ in the
specified sense. We obtain, generally speaking, a sequence of statistical struc-
tures {En, Bn, {Pθ, θ ∈ Θ}}. At the same time, Bn has the meaning of a
set of observed sets, while {Pθ, θ ∈ Θ} = {pθ, θ ∈ Θ}n. In other words,
if Y = (X1, . . . , Xn), then Pθ(A) = P (Y −1(A)), A ∈ Bn. The structure
{En, Bn, {Pθ, θ ∈ Θ}} is called the statistical structure of an iterated sampling.
In statistics, this structure {En, Bn, {Pθ, θ ∈ Θ}} is the object of investigation.

For some problems it is more convenient to use the function X = X(ω, θ) the
more so that the achievements (in particular Malliavin’s stochastic variational cal-
culus and the properties of smooth measures) of stochastic analysis have recently
made it possible to study some analytical properties of a random function X(ω, θ).

Thus, we can use the double calculus: one of them is based on the study of such
a property of the statistical structure {En, Bn, {Pθ, θ ∈ Θ}} as the smoothness
of the family of measures Pθ, and the other employs direct stochastic methods, for
which the object of the study is X(ω, θ). In particular, we are interested in the
family of distributions {Pθ(A), θ ∈ Θ, A ∈ Bn} from the viewpoint of smooth-
ness with respect to both parameters θ and A. Below we give some definitions,
notations and properties.

2 Differentiable measures

In the sequel it will always be assumed that E is a real, separable, reflexive Banach
space. Pθ( · ) is a positive measure for each fixed θ ∈ Θ. If h ∈ En is some vector,
then Pθ,h(A) denotes the measure obtained by means of bias:

Pθ,h(A) = Pθ(A + h).

We say that the measure Pθ( · ) is differentiable along a vector h ∈ En, if there
exists a bounded linear functional dhPθ, such that the equality

Pθ,h(A)− Pθ(A) = dhPθ(A)h + O(‖h‖2)

is fulfilled for each A ∈ Bn. (For the properties of differentiable measures see
[4].)
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When E, and thereby En, too, is a separable real Hilbert space with scalar prod-
uct 〈x, y〉En , x, y ∈ En, and norm ‖x‖En , x ∈ En, we write

Pθ,h(A)− Pθ(A) =
〈
dhPθ(A), h

〉
En + O

(‖h‖2
En

)

and under the derivative we mean an element of the Hilbert space En. It is under-
stood that the function dhPθ( · )h is a σ-additive (alternating) measure on Bn.

A higher order derivative of the measure is defined by iteration of the defini-
tion of a derivative. Thus, for instance, dkdhPθ = dk(dhPθh)k, k, h ∈ En. In
particular for the Hilbert space we have

〈
d

(2)
h,hPθh, h

〉
En

=
〈
dh〈dhPθ, h〉En , h

〉
En .

If Pθ( · ) is a differentiable measure, then the function ϕθ(t) = Pθ(A + th) is
non-negative and everywhere differentiable with respect to t. If the set A is such
that Pθ(A) = 0, then the point t = 0 is the point of minimum for the function
ϕθ(t). Therefore

d

dt
ϕθ(t)

∣∣∣
t=0

= 0,

i.e. dhPθ(A) = 0. Thus dhPθ ¿ Pθ. According to the Radon–Nikodym theorem,
there exists a measurable function βθ(x; h), such that

dhPθ(dx)
Pθ(dx)

= βθ(x; h).

This function is called the logarithmic derivative of the measure Pθ along a vector
h ∈ En. The logarithmic derivative βθ(x; h) is linear with respect to the second
argument. A vector h is called an admissible direction for the measure Pθ. The set
of all admissible directions is called an admissible subspace.

For the sake of simplicity, our argumentation in the sequel will always involve
the space E because all the definitions and properties are automatically applicable
to the space En as a direct product of spaces.

In the theory of differentiable measures, the validity of the formula of integra-
tion by parts is an important fact. Let E be a separable, real Hilbert space and f(x)
be the functional on E. Let us assume that there exists its derivative along a vector
h ∈ E:

dhf(x) = lim
t→0

f(x + th)− f(x)
t

= 〈f ′(x), h〉E,
and dhf ∈ L1(Pθ) for θ ∈ Θ. Then if the measure Pθ is differentiable along h, we
have ∫

E

〈f ′(x), h〉EPθ(dx) = −
∫

E

f(x)βθ(x; h)Pθ(dx).
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The logarithmic derivative of the measure can be defined along non-constant
vectors (this is the so-called logarithmic gradient). Let z(x) : E → E be the
differentiable vector field with bounded derivative sup

x∈E
‖z′(x)‖ < ∞. Denote by

St, t ∈ R the integral flow corresponding to z(x). This means that

dSt

dt
= z(St), S0 = I.

By the transformation P t
θ(A) = Pθ(S−1

t (A)), A ∈ B, to the family of measures
{Pθ, θ ∈ Θ} there corresponds the class of measures {P t

θ , θ ∈ Θ, t ∈ R}.
We say that the measure Pθ is differentiable along the vector field z(x) if there

exists a (by all means alternating) measure (alternating) DzPθ, such that for any
bounded and differentiable function ϕ : E→ E, ϕ ∈ C1(E; R) we have

∫

E

ϕ(x)DzPθ(dx) = − lim
t→0

∫

E

ϕ(x)
P t

θ − Pθ

t
(dx) = −

∫

E

ϕ′(x)z(x)Pθ(dx).

If at the same time DzPθ ¿ Pθ, then the corresponding Radon–Nikodym den-
sity is called the logarithmic derivative Pθ along the vector field z(x):

βθ(x; z) =
DzPθ(dx)
Pθ(dx)

.

Let H ⊂ E be the Hilbert space embedded in E, and let the embedding oper-
ator be the Hilbert-Schmidt operator. Then we can consider the Hilbert-Schmidt
structure E∗ ⊂ H ⊂ E. Let us define an important class of measures M on E, for
which there exists a measurable, locally bounded function ` : E→ E, such that for
each constant vector h ∈ E∗ there exists a logarithmic derivative of the measure
Pθ along that has the form

βθ(x; h) = `(θ; x)h =
〈
`(θ; x), h

〉
H.

In that case, we also say that the measure possesses the logarithmic gradient
`(θ; x).

As is known (see [5]), if Pθ ∈ M and the vector field z : E → E∗ is bounded
together with its derivative, then the measure Pθ possesses the logarithmic gradient
and the representation

βθ(x; z(x)) =
〈
`(θ; x), z(x)

〉
H + trz′(x)

is fulfilled. This continuity functional can be extended for smooth vector fields
z(x) : E→ H as a measurable linear functional. In stochastic analysis, for Gaus-
sian spaces this functional is an extended Skorokhod stochastic integral or, which
is the same, the conjugate of the Malliavin derivative.

Let us present some well-known properties of the logarithmic derivative.
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Proposition 1. Let the following conditions be fulfilled:

(i) Measures Pθ are differentiable along a vector h ∈ E;

(ii) Functions f and g are differentiable along h ∈ E;

(iii) f, g ∈ L1(dhP ) and f ′(x)h, g′(x)h ∈ L1(P ), f(x)g(x)βθ(x; h) ∈ L1(P ).

Then
∫

E

(f ′(x)h)g(x)Pθ(dx)

= −
∫

E

f(x)(g′(x)h)Pθ(dx)−
∫

E

f(x)g(x)βθ(x; h)Pθ(dx).

Proposition 2. Let the measures Pθ be differentiable along a vector h ∈ E, the
function ϕ(t) = βθ(x + th; h) be everywhere differentiable and

ϕ′(0) = β
′
θ(x; h)h ∈ L2(Pθ).

Then

(i) The measure Pθ is twice differentiable along h;

(ii) d2
h,hPθ =

{
β′θ(x; h)h + β2

θ(x; h)
}
Pθ;

(iii)
∫
E

β2
θ(x; h)Pθ(dx) = − ∫

E
β′θ(x; h)Pθ(dx).

3 Smoothness with respect to the parameter

We need to investigate the smoothness of the family of measures with respect to the
parameter. Suppose that as above we have the statistical structure {E,B, Pθ, θ ∈
Θ}, where E is a separable real Banach space, and Θ is a compactum into the
other separable real Banach space B. For any fixed A ∈ B and vector ϑ ∈ B
we consider the function derivative ψ(θ) = Pθ(A) at a point θ along ϑ. This
derivative is denoted by dθPθ(A)ϑ. For fixed θ and ϑ, it is an alternating measure.
It is easy to verify that dθPθϑ ¿ Pθ and by the Radon–Nikodym theorem there
exists a measurable function

ρθ(x; ϑ) =
dθPθ(dx)ϑ

Pθ(dx)
.

ρθ(x; ϑ) is called the logarithmic derivative of the measure Pθ with respect to the
parameter.
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WhenB is a separable Hilbert space, we denoteM by the space of measures, for
which the logarithmic derivative with respect to the parameter can be represented
as a scalar product ρθ(x; ϑ) = 〈r(x; θ), ϑ〉B. We call r(x; θ) a vector logarithmic
gradient with respect to the parameter.

Remark. We should make a special remark that if Θ consists of one point Θ =
{θ0}, then we obtain the family of measures which is constant with respect to the
parameter. In that case, the derivative with respect to the parameter is equal to 0:
r(x; θ0) = 0. We will need this obvious fact in the sequel.

For the family of measures {Pθ, θ ∈ Θ}, which possesses the logarithmic
derivative with respect to the parameter along ϑ, there exists a measure µ that
dominates this family. If Θ is a real interval, then, as is known ( [6]), all measures
Pθ are mutually equivalent and

Pθ2(dx)
Pθ1(dx)

= exp

θ2∫

θ1

ρθ(x; 1) dθ, θ1, θ2 ∈ Θ.

4 Regularity conditions

Let us list the so-called regularity conditions, the fulfillment of which is needed
for our further discussion.

Condition 1. For a random element X = Xθ = Xθ(ω) : Θ×Ω → E there exists
a derivative d

dθ Xθ = X ′ along ϑ ∈ B0 ⊂ B, where B0 is a subspace of B. This
derivative is the linear mapping B → E for each θ ∈ Θ. Also, for any ϑ ∈ B0,
θ ∈ Θ we have ‖X ′ϑ‖E ∈ L2(Ω, P ).

Condition 2. The function f(x) = E{X ′ϑ| X = x} is strongly continuous for all
ϑ ∈ B0, θ ∈ Θ.

Condition 3. The family of measures {P θ, θ ∈ Θ} possesses a logarithmic
derivative with respect to the parameter along constant vectors from a dense in
B subspace B0 ⊂ B and ρθ(x; ϑ) ∈ L2(E, Pθ), ϑ ∈ B0, θ ∈ Θ.

Condition 4. The family of measures {P θ, θ ∈ Θ} possesses the logarithmic
derivative βθ(x; h) along constant vectors from a dense in E subspace E0 ⊂ E and
βθ(x; h) ∈ L2(E, Pθ), h ∈ E0, θ ∈ Θ.
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Condition 5. The statistics T = T (x) : E→ R is such that the equality

dϑ

∫

E

T (x)Pθ(dx) =
∫

E

T (x)dϑPθ(dx)

is valid.

It is important to note that there exists an analytic connection between the in-
troduced notion of a distribution derivative with respect to the spatial argument
and the notion of a derivative with respect to the parameter. Hence the following
proposition is true.

Proposition 3 ( [1], [2]). Under regularity conditions 1–4, for the logarithmic
derivatives βθ(x; h) and ρθ(x; ϑ) we have the equality

ρθ(x; ϑ) = −βθ(x; Kθ,ϑ(x)),

where

Kθ,ϑ(x) = E

{( d

dθ
X

)
ϑ
∣∣∣ X = x

}
.

5 Maximal likelihood principle

Let {E, B, Pθ, θ ∈ Θ} be the statistical structure corresponding to a random el-
ement X = Xθ. Here E is a separable, real, reflexive Banach space, B is the
σ-algebra of Borel sets. Θ ⊂ B is a compact subset of the separable real Banach
space B. We remind that regularity conditions 1–5 are assumed to be fulfilled.

Let g(θ) = EθT (X), where T : E → R is a measurable mapping (statis-
tics). The derivative of the function g(θ) along the vector ϑ is denoted g′ϑ(θ). The
following proposition is true.

Proposition 4 (Cramer–Rao inequality) [1], [2]). If regularity conditions 1–5 are
fulfilled, then

Var T (X) ≥ (g′ϑ(θ))2

Eθρ
2
θ(X; ϑ)

=
(g′ϑ(θ))2

Eθβ
2
θ(X; E(X ′

θϑ| X))
.

Definition. The value Eθρ
2
θ(X; ϑ) is called the Fisher information along ϑ and

denoted by I(θ)ϑ. Therefore

I(θ)ϑ = Eθρ
2
θ(X; ϑ) = Eθβ

2
θ

(
X; E(X ′

θϑ| X)
)
.
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Let us consider the structure of the iterated sampling
{
En, Bn, {Pθ, θ ∈ Θ}} =

{
E, B, {pθ, θ ∈ Θ}}n

.

Theorem 1 ( [1], [2]). If there exists the logarithmic derivative ρθ(x; ϑ) of the
family pθ with respect to the parameter in the statistical structure {E, B, {pθ, θ ∈
Θ}}, then for the iterated sampling structure {En, Bn, {Pθ, θ ∈ Θ}} there also
exists the logarithmic derivative Lθ((x1, . . . , xn); (ϑ, . . . , ϑ)) of the family Pθ with
respect to the parameter, along (ϑ, . . . , ϑ) and

Lθ

(
(x1, . . . , xn); (ϑ, . . . , ϑ)

)

=
n∑

k=1

ρθ(xk, ϑ) = −
n∑

k=1

βθ

(
xk; E

{
X ′

kϑ| Xk = xk

})
.

Using this theorem, we can formulate the maximal likelihood principle in the
considered case.

In the sequel, it will always be assumed that E and B are Hilbert spaces. Let
X1, . . . , Xn be the sampling from a random element X = Xθ. θ is the unknown
parameter which we have to estimate by means of the sampling. Assume further
that there exists the logarithmic derivative ρθ(x; ϑ) with respect to the parame-
ter, along any vectors ϑ ∈ B0, of the distribution Pθ corresponding to Xθ. The
derivative has the form ρθ(x; ϑ) = 〈r(x; θ), ϑ〉B. Here B0 is a dense subset of B.

Assuming the existence and uniqueness conditions to be fulfilled, we call the
root of the equation

n∑

k=1

ρθ(xk; ϑ) = 0 ∀ϑ ∈ B0 (1)

the maximal likelihood estimator θ̂n along the direction ϑ ∈ B0 with respect to θ,
if the operator d

dθ ρθ(x; ϑ) is negatively defined.
By Proposition 3, equation (1) can be replaced by

n∑

k=1

{〈
`(xk; θ),Kθ,ϑ(xk)

〉
H + tr

d

dx
Kθ,ϑ(xk)ϑ

}
= 0 ∀ϑ ∈ B0. (2)

Note that in equations (1) and (2), xk, k = 1, 2, . . . , n, are the observed values
of Xk in the experiment.

Example. Suppose that the sampling X1, X2, . . . , Xn of a Gaussian value with
unknown mean θ and unit correlation operator in H is considered in the equipped
Hilbert space E∗ ⊂ H ⊂ E. We obtain βθ(x; h) = 〈θ − x, h〉H, h ∈ E∗. It is
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obvious that Xθ = N +θ, where N is a canonical Gaussian value with zero mean.
X ′(θ) = I , X ′(θ)h = h and therefore

Kθ,ϑ(xk) = E
{
X ′

k(θ)h| Xk(θ) = xk

}
= h.

Thus (2) takes the form
n∑

k=1

〈θ − xk, h〉H = 0.

Hence

〈θ̂, h〉H =
1
n

n∑

k=1

〈xk, h〉H

and therefore

θ̂n =
1
n

n∑

k=1

xk = x.

Also,
n∑

k=1

dh

dθ
〈x− θ, h〉H = −‖h‖2

H ≤ 0.

6 Consistency of the maximal likelihood estimator

Let the statistical structure {E,B, Pθ, θ ∈ Θ} be such that Pθ possesses the log-
arithmic derivative ρθ(x; ϑ) with respect to the parameter along a constant vector
ϑ ∈ B0, where B0 is a subspace of B.

Let us introduce the Kullback–Leibler type distance function for a pair of mea-
sures:

D(θ1, θ2) = Eθ1

{
ρθ1(X; θ2 − θ1)− ρθ2(X; θ2 − θ1)

}
. (1)

For example, in the equipped Hilbert space E∗ ⊂ H ⊂ E, for the Gaussian mea-
sures µ1 and µ2 with means θ1 and θ2, respectively, and unit correlation operators
the distance is

D(µ1, µ2) = −〈
θ1 − θ2, θ1 − θ2

〉
H = −‖θ1 − θ2‖2

H.

Lemma. Let a family {Pθ, θ ∈ Θ} ∈ M be uniquely defined by the parameter, i.e.
[Pθ1 = Pθ2 ] ⇐⇒ [θ1 = θ2] and the logarithmic derivative r(x; θ) have the contin-
uous negative-definite derivative with respect to θ. In that case, if D(θ1, θ2) ≥ 0,
then Pθ1 = Pθ2 and vice versa.
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Proof. We at once obtain that D(θ1, θ2) ≤ 0. Indeed,

D(θ1, θ2) = Eθ1

{
ρθ1(X; θ2 − θ1)− ρθ2(X; θ2 − θ1)

}

= Eθ1

{〈
r(x; θ1), θ2 − θ1

〉
B −

〈
r(x; θ2), θ2 − θ1

〉
B

}

= Eθ1

〈
r(x; θ1)− r(x; θ2), θ2 − θ1

〉
B

= Eθ1

〈
r′θ

(
X; θ1 + τ(θ2 − θ1)

)
(θ2 − θ1), θ2 − θ1

〉
B

≤ 0, 0 ≤ τ ≤ 1.

Hence it follows that if D(θ1, θ2) ≥ 0, then θ1 = θ2, which implies Pθ1 = Pθ2 and
vice versa.

Theorem 2. If Θ is a compact set and {Pθ, θ ∈ Θ} ∈ M is uniquely defined by
the parameter, then the maximal likelihood estimator is consistent.

Proof. Let θ̂n be the solution of equation (1) (or (2)) and θ0 be the true value of
the parameter θ. According to the strong law of large numbers, for any θ we have

1
n

n∑

k=1

〈
r(Xk; θ), θ0 − θ

〉
B −

1
n

n∑

k=1

〈
r(Xk; θ0), θ0 − θ

〉
B

=
1
n

n∑

k=1

〈
r(Xk; θ)− r(Xk; θ0), θ0 − θ

〉
B

a.s.−→ Eθ0

{
〈r(X; θ)− r(X; θ0), θ0 − θ〉B

}

= −D(θ0, θ) ≥ 0. (2)

Now we take into account that

n∑

k=1

〈
r(xk; θ̂n), ϑ

〉
B = 0, ϑ ∈ B0 (by equation (1)),

n∑

k=1

〈
r(xk; θ0), ϑ

〉
B = 0, ϑ ∈ B0 (by the Remark in Section 3).

Then equality (2) is fulfilled if θ = lim
n→∞ θ̂n.



On the limit properties of maximal likelihood estimators 11

7 Asymptotic normality of the maximal likelihood estimator

Theorem 3. If regularity conditions 1–5 are fulfilled, then for the maximal likeli-
hood estimator θ̂n we have the asymptotic convergence to the normal law

√
n (θ̂n − θ0)

d−→ N(0, I−1(θ)).

Proof. Denote

− 1
n

n∑

k=1

ρθ(Xk; ϑ) = Ln(θ),

then

− 1
n

n∑

k=1

d

dθ
ρ

θ
(Xk; ϑ) = L′n(θ).

We have
Ln(θ̂n)− Ln(θ0) = L′n(θ̃)(θ̂n − θ0),

where
θ̃ = θ̂n + τ(θ0 − θ̂n), 0 ≤ τ ≤ 1.

Since Ln(θ̂n) = 0, we obtain

√
n (θ̂n − θ0) = −√n (L′n(θ̃))

−1
Ln(θ0). (1)

By the strong law of large numbers we have

L′n(θ) a.s.−→ Eθ0

d

dθ
ρ

θ
(X; ϑ)

but
Eθ0

d

dθ
ρ

θ
(X; ϑ)ϑ = Eθ0ρ

2
θ(X; ϑ) = I(θ)ϑ.

We also take into account that, by the consistency theorem, θ̃ → θ0 as n →
∞. Finally, we study the expression Ln(θ0). It consists of independent, equally
distributed random values, for which Eθ0ρθ(Xk; ϑ) = 0 and Var ρθ(Xk; ϑ) =
I(θ)ϑ. According to the central limit theorem,

−√nLn(θ0)
d−→N(0; I(θ)).

Then from (1) we obtain

√
n (θ̂n − θ0) = −√n (L′n(θ̃))

−1
Ln(θ0)

d−→N(0; I−1(θ)).
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