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Morava K-theory rings for the groups G38;��� ;G41 of order 32

by

MALKHAZ BAKURADZE AND MAMUKA JIBLADZE�

Abstract

B. Schuster [19] proved that the mod 2 Morava K-theory K.s/�.BG/ is
evenly generated for all groups G of order 32. For the four groups G of order
32 with the numbers 38, 39, 40 and 41 in the Hall-Senior list [11], the ring
K.2/�.BG/ has been shown to be generated as aK.2/�-module by transferred
Euler classes. In this paper, we show this for arbitrary s and compute the ring
structure ofK.s/�.BG/. Namely, we show thatK.s/�.BG/ is the quotient of
a polynomial ring in 6 variables over K.s/�.pt/ by an ideal for which we list
explicit generators.
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1. Introduction and Statements

Let K.s/�, s > 1, be the s-th Morava K-theory at 2. In this paper we compute
the ring structure of K.s/�.BG/ for the four groups G D G38;:::;G41 from the
Hall-Senior list [11], by showing that K.s/�.BG/ is the quotient of a polynomial
ring K.s/�.pt/Œa;b;c;x2;y2;T � by a certain ideal R for which we give explicit
generators.

A finite group G is said to be good [12] if K.s/�.BG/ is generated as a K.s/�-
module by transfers of Euler classes of complex representations. Special effort
was needed to find an example of a group not good in this sense [17]. For the
additive structure, the principal calculational tool is the Atiyah-Hirzebruch spectral
sequence [2, 3] and the Serre SS [17]. Even if the additive structure is calculated,
the multiplicative structure is still a delicate task. It is not always determined
by representation theory, i.e., G does not have exact Chern approximation in the
terminology of Strickland [29]. Also the presentation of K.s/�.BG/ in terms of the
formal group law and splitting principle [16] is not always convenient. This clearly
indicates that the part of the relations which can be derived from the properties of
the transfer should play decisive role in determining the whole ring structure.

�First author was supported by Volkswagen Foundation, Ref. 1/84 328 and Rustaveli Foundation
grant DI/16/5-103/12 . Second author was supported by the STCU grant 5622 and Rustaveli
Foundation grant 09/23.



2 M. BAKURADZE & M. JIBLADZE

In the current paper we will consider four groups G D G38;��� ;G41 of order
32 from the Hall-Senior list [11]. It is proved in [19] that K.s/�.BG/ is evenly
generated and for s D 2 is generated by Euler classes and transferred Euler classes.
One consequence of our main theorem below is that this is true for any s. We obtain
generators for the ideal R above by using the formula for transferred Euler class
from [7] and follow a certain plan, which proved to be sufficient to handle the 2-
groups D,SD,QD,Q [9], [6] and modular p-groups [4]. For a discussion of the
ring structure of all other groups of order 32 see [19], [20].

Let G be one of the groups

G38 D ha;b;c j a4 D b2 D c4 D Œa;b� D 1;cac�1 D ac2;cbc�1 D a2bi;
G39 D ha;b;c j a4 D b4 D c2 D Œa;b�D 1;cacD a3;cbcD a2b3i;
G40 D ha;b;c j a4 D b4 D 1;c2 D b2;Œa;b�D 1;c�1acD a3;c�1bcD a2b3i;
G41 D ha;b;c j a4 D b4 D c2 D Œa;b� D 1;cac D a3b2;cbc D a2bi:

Let H be the maximal abelian subgroup of index two ha;b;c2i Š C4 �C2 �C2 for
G D G38 and ha;bi Š C4 �C4 for all other cases. Let �, � and � denote complex
line bundles over BH . For H CG38, let

�.a/D i;�.b/D �.c2/D�1;�.b/D �.c2/D �.a/D �.c2/D �.a/D �.b/D 1;

be the pullbacks of the canonical complex line bundles along the projections onto
the first, second and third factor of H respectively. For all other cases, let

�.a/D �.b/D i;�.b/D �.a/D 1;

be the pullbacks of the canonical complex line bundles along the projections onto
the first and second factor of H respectively.

The quotient of G by the center is isomorphic to C2 �C2 �C2. The projections
on the three factors induce three line bundles ˛, ˇ and � respectively.

Let us denote Chern classes by

xi D

(
ci .Ind

G
H .�// for G DG39;G40

ci .Ind
G
H .�// for G DG38;G41I

yi D

(
ci .Ind

G
H .�// for G DG39;G40

ci .Ind
G
H /.�/ for G DG38;G41I

aD

(
c1.˛/ for G DG38;G41
c1.˛ˇ/ for G DG39;G40I
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b D

(
c1.ˇ/ for G DG38;G39;G40
c1.˛ˇ/ for G DG41I

c D c1.�/; for all cases.

Let T r� W K.s/�.BH/ ! K.s/�.BG/ be the transfer homomorphism [1]
associated to the double covering � W BH ! BG and let

T D T r�.c1.�/c1.�//:

Note that by [14], K.s/�.pt/ is the Laurent polynomial ring in one variable,
which is usually denoted in our situation by F2Œvs;v

�1
s �, where F2 is the field of 2

elements.
Our main result is the following

Theorem 1.1 Let G be one of the groups G38;:::;G41. Then
i) K.s/�.BG/ŠK.s/�Œa;b;c;x2;y2;T �=R, where the ideal R is generated by
a2

s

, b2
s

, c2
s

,

c.cC x1C vs

s�1X
iD1

c2
s�2ix2

i�1

2 /, c.cCy1C vs
s�1X
iD1

c2
s�2iy2

i�1

2 /,

a.aC x1C vs

s�1X
iD1

a2
s�2ix2

i�1

2 /, b.bCy1C vs
s�1X
iD1

b2
s�2iy2

i�1

2 /,

.cC x1C vs

s�1X
iD1

c2
s�2ix2

i�1

2 /.bCy1C vs

s�1X
iD1

b2
s�2iy2

i�1

2 /C vsb
2s�1T ,

.cCy1C vs

s�1X
iD1

c2
s�2iy2

i�1

2 /.aC x1C vs

s�1X
iD1

a2
s�2ix2

i�1

2 /C vsa
2s�1T ,

T 2CT x1y1C x2y1.cCy1C vs

s�1X
iD1

c2
s�2iy2

i�1

2 /

Cx1y2.cC x1C vs

s�1X
iD1

c2
s�2ix2

i�1

2 /;

T .aC x1C vs

s�1X
iD1

a2
s�2ix2

i�1

2 /C vsa
2s�1x2.cCy1/,

T .bCy1C vs

s�1X
iD1

b2
s�2iy2

i�1

2 /C vsb
2s�1y2.cC x1/, cT , and

v2s x
2s

2 C

(
a2C b2C acC vsabc

2s�1 for G DG39;G40;G41
c2C ac G DG38
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v2s y
2s

2 C

�
a2C bcC vsabc

2s�1 for G DG38;G41
b2C bc G DG39

b2C c2C bc G DG40;

where

x1 D vs.x2C vsx1x
2s�1

2 /2
s�1

C

(
a for G DG38
bC cC vs.bc/

2s�1 G DG39;G40;G41I

y1 D vs.y2C vsy1y
2s�1

2 /2
s�1

C

†
c for G DG39
0 G DG40

aC bC cC

vs.abC bcC ac/
2s�1 G DG38;G41:

ii) Some other relations are
a2c D ac2; b2c D bc2; x2

s

1 D a
2s�1c2

s�1

; y2
s

1 D b
2s�1c2

s�1

:

The rest of the paper is organized as follows. Section 2 presents some
preliminaries. In Section 3 we treat the representation theory of the groups under
consideration. In Section 4 we derive the relations of Theorem 1.1. Section 5 is
devoted to the most difficult part of the proof of Theorem 1.1. Namely for each
of our groups (see Lemma 5.2, Lemma 5.6 for G39, G40 and Lemma 5.4, Lemma
5.7 for G38, G41) we prove that certain monomials in a;b;c;x1;x2;y1;y2;T form a
basis of K.s/�.BG/ as a free K.s/�-module. It follows c;a;b;x2;y2;T are K.s/�-
algebra generators as x1 and y1 are decomposable in these elements. Finally we
prove that the relations in Section 4 provide a complete set of defining relations.
For the reader’s convenience Section 6 discusses some papers on the subject.

2. Preliminaries

Let H CG be of index 2. Consider the double covering � W BH ! BG. Let

T r�� D T r
�.H;G/ WK.s/�.BH/!K.s/�.BG/

be the associated transfer homomorphism induced by the stable transfer map [1],
[15], [10]. We will need the following transfer formula from [7].

Let 	! BH be a complex line bundle and 	� D IndGH .	/ be its Atiyah transfer.
Then

c1.	�/D c1. /C vs

s�1X
iD1

c1. /
2s�2i c2.	�/

2i�1 CT r��.c1.	//; (1)
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where  ! BG is the pullback of the canonical line bundle over BZ=2 along the
map BG! BZ=2 classifying � .

Let

uD

(
c1.�/ for G DG39;G40
c1.�/ for G DG38;G41

and

v D

(
c1.�/ for G DG38;G41
c1.�/ for G DG39;G40:

For the Chern classes u, v and T r� D T r�.H;G/ the formula (1) implies

T r�.u/D cC x1C vs

s�1X
iD1

c2
s�2ix2

i�1

2 (2)

and

T r�.v/D cCy1C vs

s�1X
iD1

c2
s�2iy2

i�1

2 : (3)

One has the following approximation formula for the formal group law in
Morava K-theory ([9], Lemma 2.2 ii)).

F.x;y/D xCyC vsˆ.vs;x;y/
2s�1 ; (4)

where ˆ.vs;x;y/D xyC vs.xy/2
s�1

.xCy/modulo.xy/2
s�1

.xCy/2
s�1

:

We also will need the following

Lemma 2.1 The tensor square of a complex plane vector bundle 
 has the following
total Chern class C.
˝2/D .1C c21.det
//.1C vsc

2s

1 .
/C v
2
s c
2s

2 .
//:

Proof: Use the splitting principle and write formally


 D 	1C 	2

and
c1.
/D t1C t2I c2.
/D t1t2:

We have that the i-th Chern class (i D 1;2;3;4) on the right hand side of the bundle
relation

.	1C 	2/˝ .	1C 	2/D 	
2
1 C 	

2
2 C 2	1˝ 	2 (5)
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is the i-th elementary symmetric function in F.t1;t1/;F .t2;t2/;F .t1;t2/;F .t1;t2/.
That is

ci .

2/D �i .F.t1;t1/;F .t2;t2/;F .t1;t2/;F .t1;t2//:

Hence we have for the first Chern class

c1.

2/D vst

2s

1 C vst
2s

2 D vsc
2s

1 .
/:

For the second Chern class we have

c2.

2/D vst

2s

1 vst
2s

2 CF
2.t1;t2/D v

2
s c
2s

2 .
/C c
2
1.det
/:

Similarly, the third and fourth Chern classes are

vs.t
2s

1 C t
2s

2 /F
2.t1;t2/D vsc

2s

1 .
/c
2
1.det
/

and
vst

2s

1 vst
2s

2 F
2.t1;t2/D v

2
s c
2s

2 .
/c
2
1.det
/

respectively.

3. Bundle relations

Let us give some relations of bundles over BG we will need. We omit the proofs
since they are completely standard and easily follow from the definitions and from
Frobenius reciprocity of the transfer in complex K-theory.

Let � W BH ! BG be the double covering � D �.H;G/ and let �Š D IndGH .�/
and �Š D IndGH .�/ in each of the four cases.

GDG38; H D ha;b;c2i.

Determinants.
det.�Š/D ˛ˇ�; det.�Š/D ˛ and

Restrictions.
i) ��˛ D �2; ��ˇ D �; ��� D 1I

ii) ���Š D �C��; ���Š D �C�2�I

Product relations.
iii) ˇ�Š D �Š; ��Š D �ŠI

iv) ˛�Š D �Š; ��Š D �ŠI

v) .�Š/2 D 1C˛C � C˛� I
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vi) .�Š/2 D ˛C˛� C˛ˇC˛ˇ�:

The first relation of iv) suggests that �Š should be also transferred from some
line bundle for the 2-covering corresponding to ˛: Namely we have

Lemma 3.1 Let A D ha2;b;ci and let �0 be represented by �0.a2/ D 1; �0.b/ D 1;
�0.c/D i . Then IndGH .�/D Ind

G
A .�

0/:

Similarly the second relation of iii) suggests

Lemma 3.2 Let B D ha;ci Š hci Ì hai and let �0 be represented by �0.a/ D i;

�0.c/D 1. Then IndGH .�/D Ind
G
B .�

0/:

GDG39, H D ha;bi Š C4 �C4.

Determinants.
det.�Š/D ˇ�; det.�Š/D � .

Restrictions.
i) ��˛ D �2; ��ˇ D �2; ��� D 1I

ii) ���Š D �C�3�2, ���Š D �C �3:

Product relations.
iii) ˛ˇ�Š D �Š; ��Š D �ŠI

iv) ˇ�Š D �Š; ��Š D �ŠI

v) .�Š/2 D ˛CˇC˛� Cˇ� I

vi) .�Š/2 D 1CˇC � Cˇ�:

The first relation of iv) suggests that �Š should be also transferred from some
line bundle for the 2-covering corresponding ˇ: Namely we have

Lemma 3.3 Let B D ha;b2;ci and let �0 be represented by �0.a/D 1; �0.b2/D�1;
�0.c/D 1; Then IndGH .�/D Ind

G
B .�

0/:

The second relation of iii) suggests

Lemma 3.4 Let AB D ha2;ab;ci and let �0 be represented by �0.a2/ D �1;
�0.ab/D i; �0.c/D 1. Then IndGH .�/D Ind

G
AB.�

0/:

GDG40, H D ha;bi Š C4 �C4.

G40 has the same character table as G39. The only difference is in the
determinants of �Š and �Š, while restrictions, products, and the two lemmas above
are the same.

det.�Š/D ˇ�; det.�Š/D 1:

GDG41, H D ha;bi Š C4 �C4.



8 M. BAKURADZE & M. JIBLADZE

Determinants.
det.�Š/D ˇ�; det.�Š/D ˛ˇ�:

Restrictions.
i) ��˛ D �2; ��ˇ D �2; ��� D 1I

ii) ���Š D �C�3�2, ���Š D �C�2�:

Product relations.
iii) ��Š D ˛ˇ�Š D �ŠI

iv) ˛�Š D ��Š D �Š.

v) .�Š/2 D ˛CˇC˛� Cˇ� I

vi) .�Š/2 D ˇC˛ˇCˇ� C˛ˇ�:

Lemma 3.5 We can replace the group G40 by G41 in Lemma 3.4.

Also for �Š one has

Lemma 3.6 �Š D IndGA .�
0/; where A D ha2;b;ci; and �0.a2/ D 1; �0.b/ D i;

�0.c/D 1:

4. Relations of Theorem 1.1

Clearly the relations
a2

s

D b2
s

D c2
s

D 0:

are immediate consequences of the bundle relations ˛2 D ˇ2 D �2 D 1 for all cases.
The 4th and 5th relations follow from (2) and (3) respectively.
For the 6th relation

a.aCy1C vs

s�1X
iD1

a2
s�2iy2

i�1

2 /D 0

consider the double covering � W BH ! BG in each of the four cases and apply
formula (1) and Lemma 3.1, 3.3, 3.3 or 3.5 for G38, G39, G40, or G41 respectively.
For example if G D G38 formula (1) and Lemma 3.1 imply that the second factor
of the relation is the transfer of c1.�0/

T r�.c1.�
0//D .aCy1C vs

s�1X
iD1

a2
s�2iy2

i�1

2 /:

Then aT r�.c1.�0//D T r�.��.a/c1.�0//D T r�.0 � c1.�0//D 0.
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Similarly for the 7th relation

b.bC x1C vs

s�1X
iD1

b2
s�2ix2

i�1

2 /D 0

apply formula (1) and Lemma 3.2, 3.4, 3.4 or 3.6 for G38, G39, G40, or G41
respectively.

Now note that the 4th and 6th relations imply a2c D ac2, the first relations of
Theorem 1.1 ii). For this multiply the 4th relation by a and the 6th relation by c.
The sum of these terms equals a2c C ac2 up to an invertible factor. Similarly the
5th and 7th relation imply b2c D bc2, the second relation of Theorem 1.1 ii).

For the decompositions of v2s x
2s

2 , v2s y
2s

2 , (also for the formulas for x2
s

1 and y2
s

1

of Theorem 1.1 ii) we need the material of Section 3. Namely we have to apply
Lemma 2.1 to all induced representations given in Section 3 and take into account
that their determinants can written in terms of the bundles ˛;ˇ;� . For example for
G DG38

v2s x
2s

2 D c
2C ac; x2

s

1 D a
2s�1c2

s�1

and
v2s y

2s

2 D a
2C bcC vsabc

2s�1; y2
s

1 D b
2s�1c2

s�1

are the consequences of the product relations v) and vi). Let us prove the first two
relations. Equate Chern classes in the bundle relation of v). Then for the first Chern
classes we get

vsx
2s

1 D aC cC aC cC vsa
2s�1c2

s�1

D vsa
2s�1c2

s�1

:

For the decomposition of v2s x
2s

2 apply the equation for the second Chern classes:

v2s x
2s

2 D c2.�
2
Š /C c1.det �Š/

2

D c2.1C˛C � C˛�/C c1.˛/
2 D acC .aC c/F.a;c/C a2

D c2C acC vs.aC c/.ac/
2s�1

D c2C ac

since a2c D ac2.

Note also
akci D 0; bkci D 0; kC i > 2s: (6)

The 8th and 9th relations:

.cC x1C vs

s�1X
iD1

c2
s�2ix2

i�1

2 /.bCy1C vs

s�1X
iD1

b2
s�2iy2

i�1

2 /D vsT b
2s�1:
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Proof: Let G DG38. Consider the diagram

Bha;c2i ����! Bha;ci??y�� ??y�ˇ
Bha;b;c2i ����!

��
BG:

(7)

Then the left hand side of our relation is equal to

T r�� .u/.bCy1C vs

s�1X
iD1

b2
s�2iy2

i�1

2 / by transfer formula (1)

D T r�� .u/T r
�
ˇ .c1.�

0// by Lemma 3.2

D T r�� .u � �
�
�T r

�
ˇ .c1.�

0/// by Frobenius reciprocity of the transfer

D T r�� .u �T r
�
�.�
�
�.v/// by the double coset formula and Lemma 3.2

D T r�� .T r
�
�.�
�
�.uv/// by Frobenius reciprocity

D T r�� .uv �T r
�
�.1//

D T r�� .uv � vsc
2s�1
1 .�//

by the formula for T r�.1/

D vsT b
2s�1 by the definitions of ˇ, �, and T .

Similarly

.cCy1C vs

s�1X
iD1

c2
s�2iy2

i�1

2 /.aC x1C vs

s�1X
iD1

a2
s�2ix2

i�1

2 /C vsTa
2s�1:

Proof: Consider the diagram

Bha2;b;c2i ����! Bha2;b;ci??y��2 ??y�˛
Bha;b;c2i ����!

��
BG:

(8)

With this notation the left hand side of the above relation is equal to

T r�� .v/T r
�
˛ .c1.�

0// by Lemma 3.1 and formula (1)

D T r�� .v � �
�
�T r

�
˛ .c1.�

0/// by Frobenius reciprocity of the transfer

D T r�� .v �T r
�
�2
.��
�2
.u/// by the double coset formula and Lemma 3.1

D T r�� .T r
�
�2
.��
�2
.uv/// by Frobenius reciprocity

D T r�� .uv �T r
�
�2
.1//

D T r�� .uv � vsc
2s�1
1 .�2//

by the formula for T r�.1/

D vsTa
2s�1 by the definitions of ˛, �, and T .
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For the other cases of G the proof is analogous. We just have to apply Lemma
3.3 and Lemma 3.4 for G DG39 or G40; and Lemma 3.5 and Lemma 3.6 for G41:

The same applies to 11th and 12th relations and may be proved for all four
groups simultaneously. In each case we will arrive at

T .aC x1C vs

s�1X
iD1

a2
s�2ix2

i�1

2 /D vsa
2s�1T r�.u2v/

or

T .bCy1C vs

s�1X
iD1

b2
s�2iy2

i�1

2 /D vsb
2s�1T r�.uv2/:

Therefore we will need that for the involution t 2 C2 D G=H one has by Frobenius
reciprocity

i) T r�.u2v/D T r�.uv.uC tu/� vutu//D T r�.uv/x1�T r�.v/x2,
ii) T r�.uv2/D T r�.uv.vC tv/�uvtv//D T r�.uv/y1�T r�.u/y2:

Here are the details for G DG38. Apply again the diagram (8).

T .aC x1C vs

s�1X
iD1

a2
s�2ix2

i�1

2 /

D T r�� .uv/T r
�
˛ .c1.�

0// by Lemma 3.1 and formula (1)

D T r�� .uv � �
�
�T r

�
˛ .c1.�

0/// by Frobenius reciprocity of the transfer

D T r�� .uv �T r
�
�2
.��
�2
.u/// by the double coset formula and Lemma 3.1

D T r�� .T r
�
�2
.��
�2
.u2v/// by Frobenius reciprocity

D T r�� .u
2v �T r�

�2
.1//

D T r�� .u
2v � vsc

2s�1
1 .�2//

by the formula for T r�.1/

D vsT .u
2v/a2

s�1 by the definitions of ˛ and �

and the above equality i) gives

T .aC x1C vs

s�1X
iD1

a2
s�2ix2

i�1

2 /C vsa
2s�1T x1

C vsa
2s�1x2.cCy1C vs

s�1X
iD1

c2
s�2iy2

i�1

2 /D 0:

Then the second summand is zero by the 6th relation. The third summand is equal
to vsa2

s�1x2.cCy1/ by (6). This gives the 11th relation.
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Similarly, applying the diagram (7) and the above equality ii) we have

T .bCy1Cvs

s�1X
iD1

b2
s�2ix2

i�1

2 /Cb2
s�1Ty1Cb

2s�1y2.cCx1Cvs

s�1X
iD1

c2
s�2ix2

i�1

2 /D 0:

Again the second summand is zero by the 7th relation and the third summand is
equal to b2

s�1y2.cC x1/ and we get the 12th relation.

The relation cT D 0 is easy.

Proof: cT � cT r�� .uv/D T r
�
� .uv�

�.c//D T r�� .uv � 0/D 0.

Now let us prove the 10th relation.

Proof: Let u0 D tu and v0 D tv be as above and T r� D T r�� . Then

T r�.uv/CT r�.uv0/D T r�.u.vC v0//D T r�.u/T r�.v/;

T r�.uv/T r�.uv0/D T r�.uv.uv0Cu0v//

D T r�.u2vv0/CT r�.v2uu0/D T r�.u2/y2CT r
�.v2/x2:

Also

T r�.u2/D T r�.u.uCu0/�uu0/D T r�.u/x1�T r
�.1/x2;

T r�.v2/D T r�.v.vC v0/� vv0/D T r�.v/y1�T r
�.1/y2:

Now we apply these formulas and take into account T r�.1/x1 D T r�.1/y1 D 0.
This gives the quadratic equation in T D T r�� .uv/

T 2 D T .cC x1C vs

s�1X
iD1

c2
s�2ix2

i�1

2 /.cCy1C vs

s�1X
iD1

c2
s�2iy2

i�1

2 /

C x2y1.cCy1C vs

s�1X
iD1

c2
s�2iy2

i�1

2 /C x1y2.cC x1C vs

s�1X
iD1

c2
s�2ix2

i�1

2 /:

Now to get the 10th relation apply cT D 0.

The decompositions for x1 and y1 are the consequences of the formula (4)
applied to the determinants of �Š and �Š.

We need .x1x2/2
2s�2

D 0 and .y1y2/2
2s�2

D 0. It follows from the relations ii)
of Theorem 1.1 that moreover we have .x1x2/2

s

D .y1y2/
2s D 0: decompositions

x2
s

1 D .ac/
2s�1 and y2

s

1 D .bc/
2s�1 imply

x2
s

1 aD x
2s

1 c D x
2s

1 b
2 D y2

s

1 b D y
2s

1 c D y
2s

1 a
2 D 0

since a2c D ac2, b2c D bc2 and a2
s

D b2
s

D c2
s

D 0:
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That is, all the terms of the above decomposition of x2
s

2 annihilate x2
s

1 . Similarly
for y1 and y2. It is also clear that for computing the Euler classes of the determinants
(see Section 3) in each case we need only the initial fragment of the formal group
law F.x;y/D xCyC vs.xy/

2s�1 :

For instance consider G38: det.�Š/D ˛ˇ� , C.�Š/D 1Cy1Cy2, aD e.˛/, b D
e.ˇ/, c D e.�/, hence e.det�Š/D F.a;F.b;c//D aCbCcCvs.abCacCbc/2

s�1

:

For G41 we have different a and b, but det.�Š/ D ˇ� D ˛.˛ˇ/� , hence
e.det.�Š//D F.a;F.b;c// as for G38.

5. Invariants

Let ˛, ˇ, �, �, �Š, �Š be as above. We need the action of the involution t 2G=H D C2
on K.s/�.BH/. For simplicity we will ignore the powers of vs . Also we will
denote the restrictions of the generators of Theorem 1.1 to K.s/�.BH/ with the
same symbols but with bars.

Lemma 5.1 Let G DG39;G40. Then
t .u/D uCu2

s

C v2
s

C .uv/2
s�1

Cu2
s�1.1C2s/Cu2

s�1

v2
2s�1

I

t .v/D vC v2
s

C v2
s�1.1C2s/:

Proof: We need the action of the involution on bundles in Section 3.

t .�/D �3�2 D �.��/2; t .�/D �3 D �.�/2:

Note that the initial segment of the formal group law suffices. Namely as �4 D �4 D
1 we can apply the formula F.y;z/ D y C z C .yz/2

s�1

modulo z2
2.s�1/

(see [8],
Lemma 5.3)

t .u/D F.u;F.u2
s

;v2
s

//

D uC .u2
s

C v2
s

C .uv/2
2s�1

/Cu2
s�1

.u2
s

C v2
s

/2
s�1

D uCu2
s

C v2
s

C .uv/2
2s�1

Cu2
s�1.1C2s/Cu2

s�1

v2
2s�1

:

Similarly for v

t.v/D F.v;v2
s

/D vC v2
s

C v2
s�1.1C2s/:

We recall that K.s/�.BH/ D FpŒvs;v
�1
s �Œu;v�=.u4

s

;v4
s

/: This is because of
the Künneth isomorphisms, K.s/�.BC4 � BC4/ D K.s/�.BC4/ ˝ K.s/

�.BC4/,
whereas Morava K-theories for cyclic groups are the truncated polynomials [18].
So in particular K.s/�.BC4/DK.s/�Œu�=u4

s

.
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Then we have by definition, where bar is defined as in the first paragraph of this
section, that

NaD F.u2
s

;v2
s

/D u2
s

C v2
s

C .uv/2
2s�1

I
Nb D v2

s

I

Nx1 D uC t .u/D u
2s C v2

s

C .uv/2
2s�1

Cu2
s�1.1C2s/Cu2

s�1

v2
2s�1

I

Nx2 D ut.u/D u.uCu
2s C v2

s

C .uv/2
2s�1

Cu2
s�1.1C2s/Cu2

s�1

v2
2s�1

/I

Ny1 D vC t .v/D v
2s C v2

s�1.1C2s/I

Ny2 D vt.v/D v.vC v
2s C v2

s�1.1C2s//I
NT D uvC t .uv/D uvC

.uCu2
s

Cv2
s

C.uv/2
2s�1

Cu2
s�1.1C2s/Cu2

s�1

v2
2s�1

/.vCv2
s

Cv2
s�1.1C2s//:

Note that as u2
2s

D v2
2s

D 0 one has

Nx2
s

1 D Ny
2s

1 D Nx
22s�1

2 D Ny2
2s�1

2 D 0:

To describe all invariants we need the following

Lemma 5.2 Let G DG39;G40: Then

i) K.s/�.BH/ is a free K.s/�. Nx2; Ny2/=. Nx22
2s�1

; Ny2
22s�1/ module generated by

1;u;v;uvI

ii) K.s/�-rank of K.s/�.BH/C2 is 16s=2C 4s=2 and a basis is

1) Nx2i Ny2juv,

2) Nx2i Ny2ju, i;j � 22s�1� 2s�1 in 1), 2);

3) Nx2i Ny2jv, j � 22s�1� 2s�1;

4) Nx2
i Ny2

ju C Nx2
i Ny2

j�2s�1. Nx2
2s�1 C Ny2

2s�1
sX

kD1

Ny2
22s�1�22s�kC2s�k�2s�1

C Nx2
22s�2 Ny2

22s�2/v, i < 22s�1� 2s�1, j � 2s�1;

5) Nx2i Ny2juC Nx2i Ny2j .
sX

kD1

Ny2
22s�1�22s�kC2s�k�2s�1/vC Nx2

i�2s�1 Ny2
jC22s�1�2s�1uv,

i � 22s�1� 2s�1, j < 2s�1;

6) Nx2i Ny2juC Nx2i Ny2j .
sX

kD1

Ny2
22s�1�22s�kC2s�k�2s�1/v;

i � 22s�1� 2s�1, 2s�1 � j < 22s�1� 2s�1;

7) Nx2i Ny2j ;

i;j < 22s�1 in 1)-7).
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iii) There is a decomposition of K.s/�.BH/ into free and trivial C2 modules,
such that a basis for the trivial module is Nx2i Ny2j ; Na Nx2i Ny2j i < 2s;j < 2s�1.

iv) K.s/�.BG/ is generated by c;a;b;x2;y2;T as a K.s/�-algebra.

Proof: i) It suffices to prove that f Nx2i Ny2ig � f1;u;v;uvg, i;j < 22s�1 is a K.s/�

generating set. Clearly it will be a K.s/� basis by its number of elements. Any
polynomial in u;v can be uniquely written as f0Cf1uCf2vCf3uv, fi D fi . Nx2; Ny2/
as follows. Because u2 D u Nx1 � Nx2 and v2 D v Ny1 � Ny2 any polynomial in u;v can
be uniquely written as g0Cg1uCg2vCg3uv where gi D gi . Nx1; Ny1; Nx2; Ny2/: But

Ny1 D Ny2
2s�1 : (9)

This follows from the decomposition of Ny1 of Theorem 1.1 as Ny22
2s�1

D 0 W

Ny1 D Ny2
2s�1 C Ny1

2s�1 Ny2
22s�2 D Ny2

2s�1modulo Ny2
22s�2 Ny2

22s�2 D Ny2
22s�1 :

Similarly the decomposition of Nx1 of Theorem 1.1 implies

Nx1 D NbC Nx2
2s�1 C Nx1

2s�1 Nx2
22s�2

D NbC Nx2
2s�1 C Nb2

s�1

Nx2
22s�2modulo Nx2

22s�2 Nx2
22s�2

D NbC Nx2
2s�1 C Nb2

s�1

Nx2
22s�2 (as Nx22

2s�1

D 0).

Then

u2
s

D u Nx1
2s�1C

sX
iD1

Nx1
2s�2i Nx2

2i�1 (10)

follows inductively from u2 D u Nx1C Nx2: We can replace u; Nxi by v; Nyi in (10) and
get (by inductive argument again) from v2 D v Ny1C Ny2 and (9)

Nb D v2
s

D

sX
iD1

Ny2
22s�1C2s�i�22s�i C v Ny2

22s�1�2s�1 : (11)

Then by Theorem 1.1 Nb2 D Ny22
s

and we get for Nx1

Nx1 D Nx2
2s�1C Ny2

2s�1
sX
iD1

Ny2
22s�1�22s�iC2s�i�2s�1C Nx2

22s�2 Ny2
22s�2Cv Ny2

22s�1�2s�1 :

(12)
ii) First let us write NT in our basis. Note t .u/t.v/D . Nx1 �u/. Ny1 � v/D Nx1 Ny1 �

Nx1v� Ny1uCuv and we have NT D uvC t .uv/D Nx1 Ny1� Nx1v� Ny1u. But

Nx1v D . Nx2
2s�1C Ny2

2s�1
sX
iD1

Ny2
22s�1�22s�iC2s�i�2s�1C Nx2

22s�2 Ny2
22s�2/vC Ny2

22s�1�2s�1C1
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as v2 D v Ny22
s�1

C Ny2 and Ny22
2s�1

D 0. Then (12) and (9) imply

NT D . Nx2
2s�1 C Ny2

2s�1
sX
iD1

Ny2
22s�1�22s�iC2s�i�2s�1 C Nx2

22s�2 Ny2
22s�2/ Ny2

2s�1

C Ny2
22s�1�2s�1C1

C . Nx2
2s�1 C Ny2

2s�1
sX
iD1

Ny2
22s�1�22s�iC2s�i�2s�1 C Nx2

22s�2 Ny2
22s�2/v

C Ny2
2s�1u:

(13)

Now let g D f0 C f1uC f2vC f3uv, fi D fi . Nx2; Ny2/ be an invariant, that is,
g 2Ker.1C t /: Then

f1 Nx1Cf2 Ny1Cf3 NT D 0:

Taking into account the decompositions (12), (9) and (13) we have

f3 Ny2
2s�1 D 0; therefore

f3 Nx2
2s�1 D f1 Ny2

22s�1�2s�1 ;

f2 Ny2
2s�1 D f1. Nx2

2s�1 C Ny2
2s�1

sX
iD1

Ny2
22s�1�22s�iC2s�i�2s�1 C Nx2

22s�2 Ny2
22s�2/:

(14)

Now by the third equation of (14) we have two possible cases:
a) f1 has a factor Ny22

s�1

and we can restore f2 modulo summands of type 3). Also
f3 D 0 modulo summands of type 1). Therefore g is decomposable into sum of
elements of types 1), 3), 4), 7);
b) f1 annihilates Nx22

s�1

, that is f1 has a factor Nx22
2s�1�2s�1 . Hence right hand

side of the third equation of (14) has a factor Ny22
s�1

and we can restore f2 modulo
summands of type 3). Then by the second equation of (14) we can restore f3 modulo
summands of type 1). Hence g is decomposable into elements of types 1), 3), 5)(or
6)) and 7). If f1 annihilates Nx22

s�1

and Ny22
s�1

then by (14) g is decomposable into
the monomials 1), 2), 3) and 7) of Lemma 5.2.

By Lemma 5.2 i) the elements 1)-7) are independent, therefore they form a basis
(16s=2C 4s=2 elements in total) for the invariants.

iii) Consider now the decomposition ŒK.s/�.H/�C2 D .F/C2CT , corresponding
to the decomposition of K.s/�.H/ into free and trivial C2-modules.
Clearly the composition ��T r� D 1C t is onto .F/C2 . Also i) and the Fröbenius
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reciprocity of the transfer implies ImT r� 	 A, where A is the subalgebra in
K.s/�.BG/ generated by c;a;b;x2;y2;T . Here we use the formulas (2), (3) for
T r�.u/, T r�.v/ respectively and the decompositions of x1 and y1 of Theorem
1.1. We have to check whether the invariants in T are also covered by ��. Let
mD �s.FC2/ and nD �s.T / be the K.s/�-Euler characteristics. Then

�s.H/D 2mCn; �s.H/
C2 DmCn:

Clearly 2m C n D 16s and by ii) m C n D 16s=2 C 4s=2. It follows that m D
16s=2� 4s=2 and nD 4s:

Let us consider the invariants modulo Im.1C t / and denote by Sk , k D 1;��� ;7,
the set of invariants of type k) of Lemma 5.2 ii) modulo Im.1C t /: First note that

S7 	 S8;whereS8 D f Nx2i Ny2j ;i < 2s;j < 2s�1g; (15)

that is except f Nx2i Ny2j ;i < 2s;j < 2s�1g all monomials of Lemma 5.2 of type 7)� 0:
This is because by definition Nx1; Ny1 � 0I By (9) Ny22

s�1

� Ny1 ; The decomposition of
Nx1 after (9) implies Nx22

s

� Nb2 � 0 as by Theorem 1.1 Nb2 � Ny22
s

� Ny1
2 � 0.

Then by (12) one has

Ny2
22s�1�2s�1v � Nx2

2s�1 ; hence S3 	 S8: (16)

Also it follows all monomials of type 1) � 0, that is S1 D f0g as Nx2
2s�1

2 D 0:

(13) implies

Ny2
2s�1uD Ny2

2s�1
sX
iD1

Ny2
22s�1�22s�iC2s�i�2s�1v;modulo Nx2

2s�1 ;

hence S2 	 S3. Thus by (16) S2 	 S8:

Recall by definition NT 2 Im.1C t /: Also the first line in the decomposition (13)
2 Im.1C t / as it has factor Ny22

s�1

D Ny1. Therefore if one denotes by MT the sum of
second and third lines in (13) one has

0� MT D . Nx2
2s�1C Ny2

2s�1
sX
iD1

Ny2
22s�1�22s�iC2s�i�2s�1C Nx2

22s�2 Ny2
22s�2/vC Ny2

2s�1u:

Then the elements of S4 are Nx2i Ny2j�2
s�1 MT � 0I The same argument implies S6 D

f0g: Now only the elements of S5 remain. It suffices to prove that the element of S5
obtained for i D 22s�1� 2s�1 and j D 0 corresponds to Na, that is

Na� Nx2
22s�1�2s�1uC Nx2

22s�1�2s�1.

sX
kD1

Ny2
22s�1�22s�kC2s�k�2s�1/v

C Nx2
22s�1�2s Ny2

22s�1�2s�1uv:
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First note
Na� u Nx1

2s�1 W (17)

Recall Na D u2
s

C v2
s

C .uv/2
2s�1

. Then (10) implies u2
s

� u Nx1
2s�1C Nx2

2s�1 .
Recall Nb D v2

s

and by (11) and (12) Nx22
s�1

Cb � 0: It suffices to see .uv/2
2s�1

� 0:

(10) also implies u2
2s�1

D Nx2
22s�2 . Similarly v2

2s�1

D Ny2
22s�2 . Then recall by (9)

Ny2
2s�1 � 0 hence .uv/2

2s�1

D Nx2
22s�2 Ny2

22s�2 � 0.

Now it follows (see the proof of (12)) from Nx1 D NbC Nx2
2s�1C Nb2

s�1

Nx2
22s�2 and

Nb2 D Ny2
2s that

u Nx1
2s�1 Du Nx1 Nx1

2s�2 D ux1. Nx2
2s C Ny2

2s /2
s�1�1

D.u NbCu Nx2
2s�1/. Nx2

2s C Ny2
2s /2

s�1�1Cu. Nx2 Ny2/
22s�2. Nx2

2s C Ny2
2s /2

s�1�1

D.u NbCu Nx2
2s�1/. Nx2

2s C Ny2
2s /2

s�1�1:

Now let

.u NbCu Nx2
2s�1/. Nx2

2s C Ny2
2s /2

s�1�1 D f0Cf1uCf2vCf3uv;

where fi are polynomials in Nx2; Ny2. Let us prove that f3 D Nx22
2s�1�2s Ny2

22s�1�2s�1 :

Then we will restore f1 and f2 as above and complete the proof.
To get f3 note that by (11) only the summand v Ny22

2s�1�2s�1 in the decomposi-
tion of Nb is relevant. This gives

uv Ny2
22s�1�2s�1. Nx2

2s C Ny2
2s /2

s�1�1 D uv Nx2
22s�1�2s Ny2

22s�1�2s�1

and proves our claim for f3: Then by (14)

f1 � Nx2
22s�1�2s�1 ; f2 � Nx2

22s�1�2s�1
sX

jD1

Ny2
22s�1�22s�jC2s�j�2s�1

modulo Nx2k Ny2l , l � 2s�1, which are elements of Im.1Ct /. Hence a� f1uCf2vC
f3uv � the element of S5 with i D 22s�1 � 2s�1 and j D 0. After multiplying by
Nx2
i Ny2

j , i < 2s;j < 2s�1 we get a Nx2i Ny2j modulo Im.1C t / (still elements of S5).

iv) Consider the Serre spectral sequence for the extension 1 ! H ! G !

G=H ! 1. Then as G=H D C2

E2 DH
�.C2;K.s/�.BH//Š FC2 ˚T ˝H�.C2;F2/;

where K.s/�.BH/ D F ˚ T is the decomposition into free and trivial modules.
As in iii) let A be the subalgebra of K.s/�.BG/ generated by c;a;b;x2;y2;T .
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Then iii) says that the restriction �� W A ! ŒK.s/�.BH/�C2 is onto. ��.c/ D 0

by definition. Hence all invariants are permanent cycles and there is only one
differential d2sC1�1.t/ D vst

2sC1 . Since t2 is represented by c one obtains that
c;a;b;x2;y2;T are K.s/�-algebra generators of K.s/�.BG/ and its K.s/�-rank
equals �s.FC2 ˚ T ˝ F2Œc�=c

2s / D .16s � 4s/=2C 4s2s D 16s=2C 8s � 4s=2 as
it is already known from [19].

This completes the proof.

Lemma 5.3 Let G DG38;G41. Then
t .u/D uC v2

s

Cu2
s�1

v2
2s�1

I

t .v/D vC NbC v2
s�1 Nb2

s�1

:

Proof: Recall the action of the involution on bundles in Section 3. For G38

t .�/D ��; t.�/D �2�

and for G41
t .�/D ���.˛ˇ/; t.�/D �2�:

Since �4 D �2 D .˛ˇ/2 D 1 again we need only the initial segment of the formal
group law.

Recall that H is isomorphic to C4 � C2 � C2 for G D G38 and to C4 �C4 for
G DG41. Again by the Künneth isomorphism we have that as a K.s/�-algebra

K.s/�.BG41/DK.s/
�Œu;v�=.u4

s

;v4
s

/

and
K.s/�.BG38/DK.s/

�Œu;v;w�=.u4
s

;v2
s

;w2
s

/;

where w D c1.�/ is invariant under action of G=H D C2.
Then we have by definition

Nx1 D uC t .u/D v
2s Cu2

s�1

v2
2s�1

I

Nx2 D ut.u/D u.uC v
2s Cu2

s�1

v2
2s�1

/I

Ny1 D vC t .v/D NbC v
2s�1 Nb2

s�1

I

Ny2 D vt.v/D v.vC NbC v
2s�1 Nb2

s�1

/I

and as NT D uvC t .uv/D uvC . Nx1Cu/. Ny1C v/ we have

NT D Nx1 Ny1C Nx1vC Ny1u: (18)

Now to describe all invariants and see that K.s/�.BG/ restricts onto
K.s/�.BH/C2 , we turn to the following
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Lemma 5.4 i) Let G DG38;G41 and let x! D Nx1i Ny1j Nx2k Ny2l , i;j < 2s; k;l < 2s�1.
Then the set x! ;x!u;x!v;x!uv is a K.s/� basis in K.s/�.BH/.

ii) K.s/�-rank of K.s/�.BH/C2 is 16s=2C 4s=2 and a basis is

1) Nx1i Ny1j Nx2k Ny2l , i;j < 2s;k;l < 2s�1;

2) Nx12
s�1 Ny1

2s�1 Nx2
k Ny2

luv, k;l < 2s�1;

3) Nx12
s�1 Ny1

i Nx2
k Ny2

lu, Nx1i Ny12
s�1 Nx2

k Ny2
lv, i < 2s , k;l < 2s�1;

4) Nx1i Ny1j Nx2k Ny2luC Nx1iC1 Ny1j�1 Nx2k Ny2lv, i;j � 1 < 2s � 1;k;l < 2s�1.

iii) The set xi2y
j
2 , axi2y

j
2 , bxi2y

j
2 , abxi2y

j
2 , i;j < 2s�1 restricts to a K.s/� basis

in the trivial summand T of the C2 module K.s/�.H/.
iv) K.s/�.BG/ is generated by c;a;b;x2;y2;T as a K.s/�-algebra.

Proof: i) As in Lemma 5.2.i) any polynomial g.u;v/ can be uniquely written as
g0Cg1uCg2vCg3uv where gi D gi . Nx1; Ny1; Nx2; Ny2/: Then by Theorem 1.1 Nx22

s�1

,
Ny2
2s�1 can be expressed by Nx1; Ny1; Na; Nb. Now

Nx1 D uCF.u; Na/D uCuC NaCu
2s�1 Na2

s�1

D NaCu2
s�1

Nx1
2s�1

and we get

NaD Nx1C Nx1
2s�1uC

s�1X
iD1

Nx1
2s�2i Nx2

2i�1 : (19)

Similarly Ny1 D NbC v2
s�1

Ny1
2s�1 implies

Nb D Ny1C Ny1
2s�1vC

s�1X
iD1

Ny1
2s�2i Ny2

2i�1 : (20)

Because of nilpotence of Nx1 and Ny1 substituting Na and Nb in g.u;v/ we arrive at i)
after finite number of steps.

ii) Let
g D f0Cf1uCf2vCf3uv; fi D fi . Nx1; Ny1 Nx2; Ny2/

be an invariant, that is, g 2Ker.1C t /: Then by (18)

f1 Nx1Cf2 Ny1Cf3 NT D f1 Nx1Cf2 Ny1Cf3. Nx1 Ny1C Nx1vC Ny1u/D 0

and we get
f3 Nx1 D f3 Ny1 D 0If1 Nx1 D f2 Ny1: (21)

Now i) implies ii).
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iii) Let us look at invariants modulo 1C t : The invariants of Lemma 5.4 1) with
i;j > 0 are zero as Nx1; Ny1 2 Im.1C t /I Invariants of 4) are all zero as by (18)

Nx1vC Ny1u 2 Im.1C t /: (22)

By the same argument invariants of 3) are zero except Nx1 or Ny1 are omitted, that is
except Nx12

s�1 Nx2
k Ny2

lu, Ny12
s�1 Nx2

k Ny2
lv. This completes the basis invariants of FC2

because of the total number 16s=2� 4s=2 (see the proof of Lemma 5.2. iii).
Thus the invariants of 2) are all nonzero. Then we have that the basis invariants

corresponding to T are as follows:
Nx2
i Ny2

j is resticted xi2y
j
2 , i;j < 2s�1; and modulo 1C t

Nx1
2s�1 Nx2

i Ny2
ju is restricted axi2y

j
2 by (19);

Ny1
2s�1 Nx2

i Ny2
jv is restricted bxi2y

j
2 by (20);

Nx1
2s�1 Ny1

2s�1 Nx2
i Ny2

juv is restricted abxi2y
j
2 by (19), (20) and (22).

iv) This is the consequence of the arguments similar to that of Lemma 5.2 iv).

Remark 5.5. Of course there are alternative bases for K.s/�.BH/: For instance
Lemma 5.2.i) is also true forG DG41I ForG DG38;G41 an alternativeK�.s/-basis
is X! ;X!u;X!v;X!uv, where X! D Nx1i Nx2j Ny2k; i < 2s; j < 22s�1; k < 2s�1:

End of the proof

By Lemma 5.2 iv) and Lemma 5.4 iv) we have that c;a;b;x2;y2;T is a complete set
of K.s/� algebra generators of K.s/�.BG/. Now we want to verify that for all our
groups the defining relations of Theorem 1.1 give us a ring of Euler characteristic
already computed in [19] �s;2 D 16s=2C8s�4s=2. For each of our groups, one can
choose a basis for K.s/�.BG/. Lemma 5.2 ii) suggests the following

Lemma 5.6 A basis for K�.s/.BG/, G DG39;G40 is
fxi2y

j
2 ji;j < 2

2s�1g;
faxi2y

j
2 ji < 2

s;j < 2s�1g;
fbxi2y

j
2 ji < 2

2s�1;j < 2s�1g;
fT xi2y

j
2 ji < 2

2s�1;j < 2s�1.2s � 1/g;
fcix

j
2y

k
2 ; c

iax
j
2y

k
2 j0 < i < 2

s;j < 2s;k < 2s�1g.

Proof: One can work modulo c and check that first four lines give a basis for
K�.BG/=ker��, and then the last line forms a basis for ker��; where � W BH !
BG.

Choose the lexicographic monomial ordering (lp) corresponding to the variables
.a;T;b;y2;x2;c/ in that order. Then the first four lines constitute a Gröbner basis
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of K.s/�.BG/=ker��. The last line, a Gröbner basis of ker��, is the union of
fcix

j
2y

k
2 ; c

iax
j
2y

k
2 ;j0 < i < 2s � 1g, a basis of ker��

T
K.s/�.BG/=ImT r�, and

fc2
s�1x

j
2y

k
2 ; c

2s�1ax
j
2y

k
2 g, a basis of T r�.T /, the image of the trivial module T

of Lemma 5.2 iii) under the transfer homomorphism. For the last sentence recall
T r�.1/D vsc

2s�1:

Let us give the proof in the following steps and in this way explain the range
restrictions for indices.

Step 1. Any monomial of ker�� is decomposable into a sum of elements from
the last line of Lemma 5.6.

cb W (as cb2 D c2b the decomposition of cbi will follow).
Multiply the decomposition of x1 by c and take into account the relation c.cCx1CP
c2s�2

i

xs�12 / D 0 (note also bc2 D b2c implies c.bc/2
s�1

D 0). This gives the
decomposition of cb into the cixj2 ; 0 < i < 2

s;j � 2s�1. Namely

cb D c.x2
s�1

2 C

s�1X
iD1

c2
s�2ix2

i�1

2 /: (23)

cx2
s

2 : Multiply the decomposition of x2
s

2 by c . As c2
s

D 0; a2c D ac2 and
b2c D bc2 we have cx2

s

2 D a
2cC b2cC ac2 D b2c D bc2. Then by (23) we get

cx2
s

2 D c
2.x2

s�1

2 C

s�1X
iD2

c2
s�2ix2

i�1

2 /: (24)

cy2
s�1

2 : One has

cy2
s�1

2 D c

s�1X
iD1

c2
s�2iy2

i�1

2 C

(
0; G DG39

c2; G DG40
(25)

For this multiply the decomposition of y1 of Theorem 1.1 by c and apply the
relation c.cCy1C vs

Ps�1
iD1c

2s�2iy2
i�1

2 /D 0:

Now as ca2 D c2a and cT D 0we have proper decomposition for any monomial
having factor c.

Note one has
x2

2s�1

2 D ac2
s�1; y2

2s�1

2 D c2
s�1x2

s�1

2 : (26)

This explains the range restrictions for the first line of the basis of Lemma 5.6.
For this we need the decompositions of x2

s

2 and y2
s

2 of Theorem 1.1.

x2
2s�1

2 D .ac/2
s�1

D ac2
s�1:
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Similarly
y2

2s�1

2 D .bc/2
s�1

D c2
s�1b D c2

s�1x2
s�1

2 :

For the last two equalities apply cb2 D c2b and (23).
bx2

2s�1

2 WMultiply the first equation of (26) by b and apply (23). This gives

bx2
2s�1

2 D ac2
s�1x2

s�1

2 : (27)

Step 2.
b2 W Rewrite the decomposition of y2

s

2 of Theorem 1.1 and apply (23) to get the
proper decomposition

b2 D

(
y2

s

2 C c.x
2s�1

2 C
Ps�1
iD1c

2s�2ix2
i�1

2 /; G DG39

y2
s

2 C c
2C c.x2

s�1

2 C
Ps�1
iD1c

2s�2ix2
i�1

2 /; G DG40
(28)

a2 W By Theorem 1.1 a2 D x2
s

2 C b
2 C ac C abc2

s�1. By (23) abc2
s�1 D

ac2
s�1x2

s�1

2 . Taking into account (28) we get the proper decomposition

a2 D x2
s

2 CacCac
2s�1x2

s�1

2 C

(
y2

s

2 C c.x
2s�1

2 C
Ps�1
iD1c

2s�2ix2
i�1

2 /; G DG39

y2
s

2 C c
2C c.x2

s�1

2 C
Ps�1
iD1c

2s�2ix2
i�1

2 /;G DG40:

(29)
In the following we will work modulo c in the ring R with lexicographic

ordering determined by variables .y1;x1;a;T;b;y2;x2;c/ in that order and give the
decompositions in the above Gröbner basis of K.s/�.BG/=ker��.

by2
s�1

2 W Clearly we need the ideal I1, generated by the following relations of
Theorem 1.1: b2

s

; b.bCy1C
Ps�1
iD1b

2s�2iy2
i�1

2 /, the decomposition of y1 and (28)
modulo c. Then in the quotient ringR=I1 by2

s�1

2 is decomposable into the elements
fy
j
2 g.

ab W Let I2 be the ideal generated by the relations of I1, (29), a.a C x1 CPs�1
iD1a

2s�2ix2
i�1

2 / and decomposition of x1 multiplied by a. This gives the
decomposition of ab in R=I2 into the elements of the first three lines of our basis.

bT W Let I3 be generated by the relations of I2 and
T .b C y1 C vs

Ps�1
iD1b

2s�2iy2
i�1

2 / C b2
s�1y2.c C x1/: Then bT is decomposable

in the quotient ring R=I3 into the elements of the first and fourth lines of our basis.

T 2 W Consider the ideal
I4 D .I3;T

2 C T x1y1 C x2y1.c C y1 C
Ps�1
iD1c

2s�2iy2
i�1

2 /C x1y2.c C x1 CPs�1
iD1c

2s�2ix2
i�1

2 //:
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This gives a decomposition of T 2 which is not yet the proper decomposition, one
has terms Tyi , i � .2s � 1/2s�1: We will need the decomposition of Ty2

2s�1�2s�1

2

below to get the proper decomposition of T 2 into elements of the first, third and
fourth lines of our basis.

aT WWe need the ideal
I5 D .I4;T .aC x1C

Ps�1
iD1a

2s�2ix2
i�1

2 /C a2
s�1x2.cCy1//:

This gives the proper decomposition of aT into the first and fourth lines of our basis.

ay2
s�1

2 W Take the ideal I6 D I5+the decomposition of y1 multiplied by a and
the relation .cCy1C

Ps�1
iD1c

2s�2iyi�12 /.aC x1C
Ps�1
iD1a

2s�2iai�12 /C a2
s�1T:

Again this gives a decomposition with terms Tyi , i � .2s � 1/2s�1. To get the
proper decomposition into the first, third and fourth lines of our theorem we need
the following decomposition of

Ty2
2s�2s�1

2 W Finally put
I7 D .I6;.cCx1C

Ps�1
iD1c

2s�2ix2
i�1

2 /.bCy1C
Ps�1
iD1b

2s�2iy2
i�1

2 /Cb2
s�1T /:

By the above decomposition of bT one has b2
s�1T D Ty2

2s�2s�1

2 for the last
summand above. This is what we need for the decomposition of Ty2

2s�2s�1

2 into
the third and fourth lines of our basis.

Finally note that the decomposition of ax2
s

2 already follows from the decompo-
sition of x2

s

2 of Theorem 1.1 and decompositions of ab and a2.

Similarly Lemma 5.4 ii) suggests the following

Lemma 5.7 A basis for K.s/�.BG/, G DG38;G41 is
fxi1y

j
1x

k
2y

l
2ji;j < 2

s;k;l < 2s�1g;
fabxk2y

l
2jk;l < 2

s�1g;
fyi1ax

k
2y

l
2, x

i
1bx

k
2y

l
2ji < 2

s;k;l < 2s�1g;
fT xi1y

j
1x

k
2y

l
2ji;j < 2

s � 1;k;l < 2s�1g;
fcixk2y

l
2; c

iaxk2y
l
2; c

ibxk2y
l
2; c

iabxk2y
l
2j0 < i < 2

s;k;l < 2s�1g.

Let us give a sketch of the proof. Choose the lexicographic ordering correspond-
ing to .T;a;b;y2;x2;c/ in that order. This eliminates a and b (by decompositions of
x1 and y1 of Theorem 1.1). Then again we have to apply the relations of Theorem
1.1 and extract the following Gröbner basis of K.s/�.BG/=ker��:

fxi1y
j
1x

k
2y

l
2ji;j < 2

s;k;l < 2s�1g;
fx2

s�1C2k

2 y2
s�1C2l

2 jk;l < 2s�1g;
fx2

s�1C2k

2 yi1y
l
2, x

i
1x
k
2y

2s�1C2l

2 ji < 2s;k;l < 2s�1g;
fT xi1y

j
1x

k
2y

l
2ji;j < 2

s � 1;k;l < 2s�1g;
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(here a is replaced by x2
s�1

2 and b by y2
s�1

2 in the first four lines of Lemma 5.7)
and a Gröbner basis of ker��

fcixk2y
l
2; c

ix2
s�1C2k

2 yl2; c
ixk2y

2s�1C2l

2 ; cix2
s�1C2k

2 y2
s�1C2l

2 j0 < i < 2s;k;l < 2s�1g

corresponding to the last line of Lemma 5.7.

6. Remarks

The families of non-abelian p-groups whose MoravaK-theory is known to be good
in the sense of Hopkins-Kuhn-Ravenel is listed in [19]. In particular, if G belongs
to any of the following families of p-groups, then K.n/odd .BG/D 0:

(a) wreath products of the form H oCp with H good [12], [13];
(b) metacyclic p-groups [25];
(c) minimal non-abelian p-groups, i.e., groups all of whose maximal subgroups

are abelian [26];
(d) groups of p-rank 2 [27];
(e) elementary abelian by cyclic groups, i.e., the extensions V ! G ! C with

V elementary abelian and C cyclic [28], [17];
(f) central product of the form H ıCpm with H good [19].
(g) H is a normal subgroup in G of index p, H is good and the integral Morava

K-theory QK.s/.BH/ is a permutation module for the action of G=H [17].

For these families the ring structure of K.s/�.BG/ is either studied in the
works mentioned above or can be read off from previously performed computations
modulo some definite indeterminacy. Namely, Yagita and Tezuka determined the
multiplicative structure modulo the transfer formula (1). On the other hand, our
main aim here is to check (at least for the groups with maximal abelian subgroup
of index 2) whether the transfer formula is sufficient to get the ring structure in
combination with the methods of characteristic classes and transfer (double coset
formula, etc.) The papers [5, 4, 6, 9] treat the same problem.

Schuster suggested an alternative way to obtain explicit relations by choosing
some artificial generators in the spectral sequence, not equal to Chern classes [19,
23].

There are 51 groups of order 32. The first 7 groups are abelian and the next 8
have an abelian factor, hence the task of computing the ring structure is reduced to
the smaller nonabelian groups. We refer the reader to [21, 22] for some details. In
this paper, we carry out the complete details for the groups G in the Hall-Senior list
with the numbers 39;��� ;41.
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