
COMPUTING THE KRICHEVER GENUS

MALKHAZ BAKURADZE

Abstract. Let ψ denote the genus that corresponds to the formal group law having invariant

differential ω(t) equal to
√

1 + p1t+ p2t2 + p3t3 + p4t4 and let κ classify the formal group law
strictly isomorphic to the universal formal group law under strict isomorphism xCP(x). We
prove that on the rational complex bordism ring the Krichever-Höhn genus ϕKH is the compo-

sition ψ ◦ κ−1. We construct certain elements Aij in the Lazard ring and give an alternative
definition of the universal Krichever formal group law. We conclude that the coefficient ring
of the universal Krichever formal group law is the quotient of the Lazard ring by the ideal
generated by all Aij , i, j ≥ 3.

1. Rational Krichever-Höhn genus

For the current state of complex cobordism and formal group laws we refer the reader to the
excellent survey [5].

A formal group law over a commutative ring with unit R is a power series F (x, y) ∈ R[[x, y]]
satisfying

(i) F (x, 0) = F (0, x) = x,
(ii) F (x, y) = F (y, x),
(iii) F (x, F (y, z)) = F (F (x, y), z).

Let F and G be formal group laws. A homomorphism from F to G is a power series ν(x) ∈ R[[x]]
with constant term 0 such that

ν(F (x, y)) = G(ν(x), ν(y)).

It is an isomorphism if ν′(0) (the coefficient at x) is a unit in R, and a strict isomorphism if
the coefficient at x is 1.

If F is a formal group law over a commutative Q-algebra R, then it is strictly isomorphic to
the additive formal group law x+ y. In other words, there is a strict isomorphism l(x) from F to
the additive formal group law, called the logarithm of F , so that F (x, y) = l−1(l(x) + l(y)). The
inverse to logarithm is called the exponential of F .

The logarithm l(x) ∈ R⊗Q[[x]] of a formal group law F is given by

l(x) =

∫ x

0

dt

ω(t)
, ω(x) =

∂F (x, y)

∂y
(x, 0).

There is a ring L, called the universal Lazard ring, and a universal formal group law F (x, y) =∑
aijx

iyj defined over L. This means that for any formal group law G over any commutative ring
with unit R there is a unique ring homomorphism r : L→ R such that G(x, y) =

∑
r(aij)x

iyj .
The formal group law of geometric cobordism was introduced in [12]. Following Quillen we will

identify it with the universal Lazard formal group law as it is proved in [13] that the coefficient
ring of complex cobordism MU∗ = Z[x1, x2, ...], |xi| = 2i is naturally isomorphic as a graded ring
to the universal Lazard ring.

The Krichever-Höhn genus or the general four variable complex elliptic genus [7],[8],

ϕKH :MU∗ ⊗Q → Q[q1, ..., q4]
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is a graded Q-algebra homomorphism defined by the following property: if one denotes by fKr(x)
the exponential of the Krichever [6] universal formal group law FKr, then the series

h(x) :=
f ′Kr(x)

fKr(x)

satisfies the differential equation

(1.1) (h′(x))2 = S(h(x)),

where S(x) = x4 + q1x
3 + q2x

2 + q3x+ q4, the generic monic polynomial of degree 4 with formal
parameters qi of weights |qi| = 2i.

This genus is the universal genus on the rational bordism ring of SU -manifolds which is multi-
plicative in fiber bundles of SU -manifolds with compact connected structure group.

To generalize the Ochanine elliptic genus from ΩSO∗ ⊗Q to Q[µ, ϵ] (see [9]), a new elliptic genus
ψ is defined in [10],

ψ :MU∗ ⊗Q → Q[p1, p2, p3, p4],

to be the genus whose logarithm equals∫ x

0

dt

ω(t)
, ω(t) =

√
1 + p1t+ p2t2 + p3t3 + p4t4

and pi are again formal parameters |pi| = 2i.

It is proved in [10] that the ψ-genus is the universal genus on the rational complex bordism
ring which is multiplicative in projectivizations P (E) of complex vector bundles E → B over
Calabi-Yau 3-folds B (i.e. B is a compact Kähler manifold with vanishing first Chern class).

Clearly to calculate the values of ψ on CPi, the generators of the rational complex bordism
ring MU∗ ⊗Q = Q[CP1,CP2, . . . ] we need only the Taylor expansion of (1 + y)−1/2 as by above
definition

(1 + p1x+ p2x
2 + p3x

3 + p4x
4)−1/2 = log′ψ =

∑
i≥1

ψ(CPi)x
i.

A straightforward calculation shows that ψ is surjective [10]:

ψ(CP1) = −1
2p1;

ψ(CP2) =
3
8p

2
1 − 1

2p2;

ψ(CP3) = − 5
16p

3
1 +

3
4p1p2 −

1
2p3;

ψ(CP4) =
35
128p

4
1 − 15

16p
2
1p2 +

3
8p

2
2 +

3
4p1p3 −

1
2p4.

It is natural to ask whether we can similarly calculate ϕKH in an elementary manner, different
from that relying on the formulas in [3] and [7].

Let κ be the classifying map of the formal group law F̃ over the rational Lazard ring defined
as follows.

Let CP(x) = 1+
∑
i≥1 CPix

i, where CPi is the bordism class of the complex projective space

CP i and let

ν(x) := xCP(x)

be the strict isomorphism F → F̃ , where F is the universal formal group law, so that

ν(F (x, y)) = F̃ (ν(x), ν(y)).

Now let

κ :MU∗ ⊗Q →MU∗ ⊗Q
be the classifying map of F̃ and let log(x) and mog(x) be the logarithm series of F and F̃
respectively then by definition

mog(x) = log(ν−1(x)), κ(log(x)) = mog(x).

Therefore the value κ(CPi) is determined by equating the coefficients at xi in
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(1.2)
∑
i≥1

κ(CPi)

i+ 1
xi+1 =

∑
i≥1

CPi
i+ 1

(ν−1(x))i+1.

For instance

κ(CP1) = −CP1;
κ(CP2) = 3CP2

1 − 2CP2;
κ(CP3) = −10CP3

1 + 12CP1CP2 − 3CP3;
κ(CP4) = 35CP4

1 − 60CP2
1CP2 + 20CP1CP3 + 10CP2

2 − 4CP4.

The following theorem shows how ϕKH is related to ψ.

Theorem 1.1. Let F be the universal formal group law and F̃ its strictly isomorphic formal
group law under strict isomorphism ν(x) = xCP(x). Let t : Q[p1, ..., p4] → Q[q1, ..., q4] be the ring

isomorphism defined by t(pi) = qi and κ :MU∗ ⊗Q →MU∗ ⊗Q the classifying map of F̃ . Then

i) the pair (t,
∑
i≥0 ϕKH(CPi)x

i+1) is the strict isomorphism from ϕKH(F ) to ψ(F ), i.e., the

series
∑
i≥0 ϕKH(CPi)x

i+1 is the strict isomorphism from ϕKH(F ) to tψ(F ) in the usual sense.

ii) A method to compute ϕKH is given by the formula ϕKH = t ◦ ψ ◦ κ−1.

To establish the theorem, we need the following two lemmas.

Lemma 1.2. Let exp be the exponent of F . The series 1
h(x) = exp(x)/exp′(x) is invertible.

Furthermore, the inverse j(x) of this series coincides with then mog(x), the logarithmic series of

F̃ .

Proof. Note that

j−1(log(x)) =
exp(log(x))

exp′(log(x))
= xCP(x).

Hence by definition of ν(x) one has

j−1(mog(x)) = j−1(log(ν−1(x))) = ν−1(x)CP(ν−1(x)) = x,

as xCP(x) = ν(x). �

Lemma 1.3. Let ω̃ = 1
mog′(x) be the invariant differential form of the formal group law F̃ above.

Then the condition of Krichever-Höhn (1.1) is satisfied if and only if ω̃(x)2 is a polynomial of
degree 4.

Proof. Since the series j(x) is invertible, the condition (1.1) is equivalent to

(h′(j(x)))2 = S(h(j(x))).

But h(j(x)) = 1/x, hence

(h ◦ j)′(x) = h′(j(x))j′(x) = −1/x2,

so that by Lemma 1.2

h′(j(x)) = −ω̃(x)/x2.
It follows that the condition (1.1) is equivalent to

ω̃(x)2 = x4S(1/x),

where on the right hand side one clearly has a degree four polynomial. �
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Now let us prove Theorem 1.1. Lemma 1.3 implies that ϕKH(F̃ )) is of type ψ(F ), that is
corresponding invariant form ω(x)2 is a polynomial of degree 4. By definition the formal group law

ψ(F ) is universal with this property. Therefore there is classifying map of ϕKH(F̃ ), that is unique

ring homomorphism t : Q[p1, ..., p4] → Q[q1, ..., q4] such that t(ψ(F )) = ϕKH(F̃ ) = ϕKH(κ(F )).
Therefore t ◦ψ = ϕKH ◦κ. This proves i). For ii) note that by definition κ is isomorphism and we
get t ◦ ψ ◦ κ−1 = ϕKH . Finally t(pi) = qi as t is unique and it sends 1 + p1t+ p2t

2 + p3t
3 + p4t

4

to 1 + q1t+ q2t
2 + q3t

3 + p4t
4. �

2. Integral Krichever genus

Now we turn to the universal Krichever formal group law FKr [8] and prove that it coincides
with the universal formal group law by Buchstaber FB (with a minor specialisation that does not
affect the formal group law).

In [4] V. M. Buchstaber has given the analytical solution of a functional equation for the
exponent of the formal group law of the form

(2.1) FB(x, y) =
∑

αijx
iyj =

A(y)x2 −A(x)y2

B(y)x−B(x)y
.

Note that if our series A and B have the form

A(t) = A0 +A1t+A2t
2 +O(t3),

B(t) = B0 +B1t+B2t
2 +O(t3),

then the coefficient B1 = B′(0) does not affect the formal group law.

Lemma 2.1. Let ω(x) = ∂F (x,y)
∂y (x, 0) be the invariant form of the universal formal group law F ,

and let F be the formal group law of the form (2.1), with B′(0) = A′(0). Then the invariant form
of F equals B(x), i.e., B(x) is the image of ω(x) under the ring homomorphism classifying the
formal group law F .

Proof. To see this note that

F(x, y) =
A0

B0
(x+ y) +O(xy).

So if F(x, y) is a formal group law we must have A0 = B0, and after dividing the numerator and
denominator appropriately we may assume that A0 = B0 = 1. We then furthermore calculate

F(x, y) = x+ y +A1xy +

∞∑
i=2

Bi(x
iy + xyi) +O(x2y2).

We thus have

α1i = Bi, i ≥ 2, α11 = A1 = A′(0) = B′(0)

and

1 +
∑
i>1

α1it
i

is restricted (1 +
∑
i>1[CPi]ti)−1 = ω(t). �

Let us now present a minor modification of the analysis of FB performed in [11] and as Lemma
2.1 suggests to introduce

(2.2) A(x, y) =
∑

Aijx
iyj = F (x, y)(xω(y)− yω(x)).

We define the universal Nadiradze formal group law FN by the obvious classifying map of the
Lazard ring to its quotient ring by the ideal generated by all Aij with i, j ≥ 3.
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Proposition 2.2. Let L denote the Lazard ring.

i) In L[[x]], the identity ω′(x)− ω′(0) = 2xω̂(x) holds, where ω̂(x) =
∑
i>1 ωix

i−1.

ii) The formal series A(x, y) satisfies the identity

A(x, y) = (xω(y) + yω(x)− ω′(0)xy) (xω(y)− yω(x)) + (ω(x)ω̂(x)− ω(y)ω̂(y))x2y2

in L[[x, y]]/(xy)3.

Proof. Let f and g be the exponent and logarithm of F , respectively. Hence F (x, y) = f(g(x) +
g(y)) and

(2.3) f ′(x) = 1/g′(f(x)) = ω(f(x)), f ′(g(x)) = ω(f(g(x)) = ω(x).

Let ω(x) = 1 + b1x+ b2x
2 + · · · . Since g′′(0) = −f ′′(0) = −ω′(0) = −b1, we conclude

(2.4)
∂2F

∂y2
(x, 0) = f

′′
(g(x)) + f ′(g(x))g′′(0) = ω′(x)ω(x)− ω′(0)ω(x).

This implies i), since the left hand side of (2.4) has factor 2, and ω(x) is invertible. ii) Because of
antisymmetry we have modulo (xy)3

A(x, y) = A(y)x2 −A(x)y2 =
∑

(Ai2x
2yi −Ai2x

iy2).

We want to calculate −
∑
Ai2x

i in terms of ω(x).

Applying ∂2

∂y2 (x, 0) to (2.2) and taking into account (2.3) and (2.4) we obtain

−2
∑

Ai2x
i = xω(x)ω′(x)− xω′(0)ω(x) + 2xω′(0)ω(x)− 2ω2(x) + 2b2x

2.

Since the coefficients are in the Lazard ring, this reasoning implies

−
∑

Ai2x
i = xω(x)

ω′(x)− ω′(0)

2
+ xω′(0)ω(x)− ω2(x) + b2x

2.

Consequently∑
(Ai2x

2yi −Ai2x
iy2) = (xω(y) + yω(x))(xω(y)− yω(x))− ω′(0)xy(xω(y)− yω(x))

+ ω(x)ω̂(x)x2y2 − ω(y)ω̂(y)x2y2.

�

In order to compute the Krichever genus on the coefficients of the formal group law of geometric
cobordism, in [6], the universal Krichever formal group law FKr is defined as

(2.5) FKr(x, y) = xb(y) + yb(x)− b′(0)xy +
b(x)β(x)− b(y)β(y)

xb(y)− yb(x)
x2y2,

where β(x) = b′(x)−b′(0)
2x . In [6], it is moreover proved that

b(x) =
∂FKr
∂y

(x, 0).

Lemma 2.1 and Proposition 2.2 ii) imply that FKr can alternatively be defined by the classifying
map of FN if B(x) is written as b(x). Thus FN = FKr.

Following [4], the authors of [3] consider the following formal group law corresponding to the
Krichever genus

Fb(u1, u2) = u1c(u2) + u2c(u1)− au1u2 −
d(u1)− d(u2)

u1c(u2)− u2c(u1)
u21u

2
2.

It follows from Lemma 2.1 and Proposition 2.2 ii) that, if we take c′(0) = a, the Krichever genus
Fb(x, y) coincides with (2.5), that is c(x) = b(x) and d(x) = −b(x)β(x).

Thus we get the following
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Theorem 2.3. Let F be the universal formal group law, let ω(x) = ∂F (x,y)
∂y (x, 0) be its invariant

form, and let ∑
Aijx

iyj = F (x, y)(xω(y)− yω(x)).

The Buchstaber, Krichever and Nadiradze formal group laws coincide, that is,

Fb = FKr = FN ,
and the coefficient ring is the quotient of the Lazard ring by the ideal generated by all Aij with
i, j ≥ 3.

In [1], we calculated the coefficient ring of the Nadiradze formal group law FN up to dimension
26. Namely, there is a set of polynomial generators z1, z2, ... of the Lazard ring for which the low
degree defining relations are

5z5 = z2z3 + 2z1z4, 2z6 = 0, z1z6 = 0, z3z6 = 0, z10 = 0, z5z6 = 0, z12 = 0,

and 7z7, 2z8, 3z9, 11z11, and 13z13 are decomposable. For reasons of space, we omit here these
long decompositions. We note that our calculations agree with the results in [6] on the structure
of the coefficient ring of FKr obtained in terms of the associativity equation. The new information
here concerning the Krichever group and hence the Krichever genus is that, in dimensions 20 and
24, there are no indecomposable elements, because in these dimensions z10 = 0 and z12 = 0.

The question arises in which dimensions any element is multiplicatively decomposable.
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