Turbidimetric method of determination of sulfates' microquantity to ascertain a falsification of Borjomi mineral water

Nino Takaishvili, Guram Supatashvili^a

E-mail: nino.takaishvili@tsu.ge

^a Department of chemistry, Chair of physical and analytical chemistry, Iv. Javakhishvili Tbilisi State University, 3, I. Chavchavadze ave.

Annotation

Turbidimetric method of determination of sulfates microquantity can be successfully used in order to ascertain a falsification of Borjomi mineral water.

The most common method of Borjomi falsification is the insertion of some components (NaHCO₃, NaCl, CO₂ etc.) into ordinary drinking water.

There are several options for identification of falsified Borjomi water (determination of microcomponents, complete analysis) that is labor-consuming and long-time process. For this purposes we can use sulfate-ion as controlling component. This selection is justified by the fact that artificial control of SO_{4²⁻} content is virtually impossible.

For determination of SO_{4²⁻} in mineral waters of carbonate class 100,0 ml of sample were preliminary neutralized with 1:1 HCl, were heated up to boiling for CO₂ removal, then were cooled, filled up to 100,0 ml and afterwards SO_{4²⁻} was determined turbidimetrically in the aliquot (5,0ml). It is possible to insert surface active substance (synthanol DC-10) into a composition of precipitating agent, which increases by 30-50% optical density of BaSO₄ suspension.

According to Borjomi water standards a concentration of $SO_{4^{2-}}$ should be < 10 mg/l (usually it equals to 2-4 mg/l), while in falsified samples, if they are prepared from drinking water (Natakhtari or other), concentration of $SO_{4^{2-}}$ is more than 20-30 mg/l.