On the deduction of optimal stopping problem with incomplete data P.Babilua, B.Dochviri, G.Lominashvili

Ivane Javakhishvili Tbilisi State University, Department of Mathematics; Akaki Tsereteli University

p babilua@yahoo.com, besarion.dochviri@tsu.ge, g.lominashvili@gmail.com

We consider the optimal stopping problem with incomplete data for the partially observable stationary wide sense random sequence $(\theta, \xi) = (\theta_n, \xi_n), n = 0, 1, ...,$ where θ is the nonobservable random sequence and ξ is the observable random sequence. This problem is reduced to the optimal stopping problem of random sequence $\tilde{\theta} = (\tilde{\theta}_n), n = 0, 1, ...,$ with complete data:

$$\begin{split} \tilde{\theta}_{n+1} &= -b_1 \tilde{\theta}_n + P(n) Q^{-\frac{1}{2}}(n) \eta_1(n+1), \\ P(n) &= (b_2 - b_1) \varepsilon_1^2 + (b_2 - b_1) b_1^2 \gamma_n, \\ Q(n) &= (b_2 - b_1) \varepsilon_1^2 + (b_2 - b_1)^2 b_1^2 \gamma_n + (\varepsilon_1 + \varepsilon \varepsilon_2)^2, \end{split}$$

where $|b_1| < 1$, $|b_2| < 1$; $\eta_1 \sim N(0,1)$; ε , ε_1 , ε_2 are small coefficients and γ_n is the error of filtration.

Research partially supported by Shota Rustaveli National Scientific Grant No FR/308/5-104/12.

References

1. Shiryayev A.N., Probability, Springer-Verlag, 1984.

2. BabiluaP., Dochviri B., Purtukhia O., Sokhadze G., On the problem of optimal stopping with incomplete data, TSU-95 & VIAM-45, Seconed International Conference "Modern Problems in Applied Mathematics," Book of abstracts, Tbilisi, 2013, p.60.