Efficient Algorithm for Numerical Calculation of Trigonometric Hyperbolic Functions

Nana DIkhaminjia ${ }^{1}$, Jemal Rogava ${ }^{1}$, Mikheil Tsiklauri ${ }^{2}$
${ }^{1}$ I. Vekua Institute of Applied Mathematics \& Department of Exact and Natural Sciences of Tbilisi State University, 2 University St, Tbilisi, 0186, Georgia
${ }^{2}$ EMC Laboratory, Missouri University of Science and Technology, Rolla, MO 65401, USA

Keywords and phrases: Trigonometric hyperbolic matrix functions; Two layer scheme; Recurrent relation;
In the present work efficient algorithm for numerical calculation of sine and cosine hyperbolic functions is developed. Sine and cosine hyperbolic functions are defined by the following formulas:

$$
\begin{equation*}
\cosh (x)=\frac{e^{x}+e^{-x}}{2}, \quad \sinh (x)=\frac{e^{x}-e^{-x}}{2} \tag{1}
\end{equation*}
$$

There is constructed recurrent two layer scheme for approximate calculation of (1) sine and cosine hyperbolic matrix functions. Main idea of the algorithm is to calculate $\cosh \left(x_{0} A\right)$ and $A^{-1} \sinh \left(x_{0} A\right)$ for small values of $x_{0}=l / 2^{n}$ and then reconstruct $\cosh (l A)$ and $A^{-1} \sinh (l A)$ using the following well-known double angle trigonometric formulas:

$$
\begin{array}{r}
\cosh (l A)=2 \cosh ^{2}(A l / 2)-I \\
A^{-1} \sinh (l A)=(l A / 2)^{-1} \sinh (l A / 2) \cosh (l A / 2) \tag{3}
\end{array}
$$

Let us introduce the following notations:

$$
\begin{array}{r}
U(x)=\cosh (x A)=I+\frac{x^{2}}{2!} A^{2}+\frac{x^{4}}{4!} A^{4}+\ldots, \quad x \in[0, l] . \\
V(x)=(x A)^{-1} \sinh (x A)=I+\frac{x^{2}}{3!} A^{2}+\frac{x^{4}}{5!} A^{4}+\ldots, \quad x \in[0, l] \tag{5}
\end{array}
$$

Obviously, according to the (2) and (3), $U(x)$ and $V(x)$ satisfy the following recurrent relations:

$$
\begin{equation*}
U\left(x_{k+1}\right)=2 U^{2}\left(x_{k}\right)-I, \quad V\left(x_{k+1}\right)=V\left(x_{k}\right) U\left(x_{k}\right) \tag{6}
\end{equation*}
$$

where $x_{k}=2^{k} / 2^{n} l, \quad k=0,1, \ldots, n$. For numerical calculation of (6), we need initial values $U\left(x_{0}\right)$ and $V\left(x_{0}\right)$. Let us calculate approximate values of these matrices by the following formulas:

$$
\begin{gather*}
U_{0}=P_{0}\left(x_{0} A\right)=I+\frac{x_{0}^{2}}{2!} A^{2}+\frac{x_{0}^{4}}{4!} A^{4}+\ldots+\frac{x_{0}^{2 p}}{(2 p)!} A^{2 p}, \tag{7}\\
V_{0}=I+\frac{x_{0}^{2}}{3!} A^{2}+\frac{x_{0}^{4}}{5!} A^{4}+\ldots+\frac{x_{0}^{2 p}}{(2 p+1)!} A^{2 p} \tag{8}
\end{gather*}
$$

Then, (7) da (8) will be replaced by the following recurrent relations:

$$
\begin{equation*}
U_{k}=2 U_{k-1}^{2}-I, \quad V_{k}=V_{k-1} U_{k-1}, \quad k=1,2, \ldots, n . \tag{9}
\end{equation*}
$$

Let us note that for $\cosh (l A) \approx U_{n}$ and $A^{-1} \sinh (l A) \approx V_{n}$ calculations we need to use just matrix multiplication. Stability of (9) scheme is shown, convergence theorem is proved and approximation error is estimated.

